
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 1

Understanding Differencing Algorithms for
Mobile Application Updates

Tong Sun†, Bowen Jiang†, Lewei Jin†, Wenzhao Zhang†, Yi Gao†, Zhendong Li‡, Wei Dong†
†College of Computer Science and Technology, Zhejiang University, China

‡ Huawei Technologies Co., Ltd.
Email: {tongsun, jiangbw, jinlw, wz.zhang, gaoyi, dongw}@zju.edu.cn, lizhendong8@huawei.com

✦

Abstract—Mobile application updates occur frequently, and they con-
tinue to add considerable traffic over the Internet. Differencing algo-
rithms, which compute a small delta between the new version and the
old version, are often employed to reduce the update overhead. Re-
searchers have proposed many differencing algorithms over the years.
Unfortunately, it is currently unknown how these algorithms quantita-
tively perform for different categories of applications. It is also challeng-
ing to know the impacts of different techniques and whether a technique
in one algorithm can be integrated into another algorithm for further
performance improvement.

This paper conducts the first systematic study to understand the
performance of four widely used differencing algorithms for mobile ap-
plication updates, including xdelta3, bsdiff, archive-patcher, and HD-
iffPatch with respect to five key metrics, including compression ratio,
differencing time/memory overhead, and reconstruction time/memory
overhead. We perform measurements for 200 mobile applications, and
analyze key techniques (such as decompressing-before-differencing,
sliding window, and copy instructions merging) that influence the per-
formance of these algorithms. We have provided four important findings
which give insights to further optimize for performance improvement.
Guided by these insights, we have also proposed a novel algorithm,
sdiff, which achieves the smallest compression ratio to state-of-the-art
algorithms by combining an appropriately chosen set of key techniques.

Index Terms—Differencing algorithms, Mobile applications, Compres-
sion.

1 INTRODUCTION

MOBILE application updates occur frequently and add
considerable traffic over the Internet. According to

Statista’s reports, the number of application downloads
worldwide has reached 275 billion in the year 2022 [1]. It
is very common that there is an update for a mobile appli-
cation every few weeks, e.g., adding additional functional-
ities [2], enhancing user QoE (Quality of Experience) [3],
or fixing software bugs. Mobile operators spend billions
of dollars for mobile application updates every year, e.g.,
paying for the server bandwidth of the CDN (Content
Delivery Network) services. To reduce the update overhead,
they often apply a differencing algorithm that computes
a small delta between the new version of the updated
application and the version already installed on the user’s
mobile device.

Researchers have proposed many differencing algo-
rithms over the years [4], [5], [6], [7]. Researchers in the
sensor network community have proposed many differenc-
ing algorithms for firmware updates [8], e.g., delta++ [9],
r2diff [10], r3diff [11], DASA [12], and S2 [13]. DASA [12]
and r3diff [11] can generate the optimal delta size assuming
a given set of commands and cost measures in the delta
file [14]. More sophisticated differencing algorithms have
appeared in recent years, e.g., xdelta3 [15], bsdiff [16], HD-
iffPatch [17], and archive-patcher [18]. They are widely used
in today’s mobile app markets, e.g., the archive-patcher
algorithm is employed in Google Play [19], HDiffPatch is
used in OPPO’s APP Market [20], xdelta3 is utilized in the
Xiaomi app store [21], and bsdiff is employed in Yingyong
Bao (a widely used third-party app store in China) [22].
We perform measurements on 200 updates for 200 mobile
applications, covering both normal (i.e., non-gaming) and
game applications.

Unfortunately, it is currently unknown how these al-
gorithms quantitatively perform for different categories of
applications, with respect to key metrics such as compres-
sion ratio, differencing time (for generating the delta at the
server side), and reconstruction time (for reconstructing the
new application version by patching the delta to the old
application version at the mobile client side). Since these
algorithms often adopt inter-correlated techniques, it is also
challenging to know the impacts of different techniques and
whether a technique in one algorithm can be integrated into
another algorithm for further performance improvement.

This paper conducts the first systematic study to un-
derstand the performance of four widely used differenc-
ing algorithms for mobile application updates, including
xdelta3 [15], bsdiff [16], archive-patcher [18], and HDiff-
Patch [17] with respect to five key metrics including com-
pression ratio, differencing time/memory overhead, and
reconstruction time/memory overhead.

Summary of insights. Our measurements lead to four
important findings, which we summarize as follows:

(i) Our results show that both bsdiff and archive-patcher
fail in generating delta files for large APKs. In addition,
archive-patcher fails for some cases during reconstruction
at the mobile side. While some failures can be addressed by

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 2

either relaxing the threshold or modifying the temporal di-
rectory, it requires a more systematic approach to addressing
failures caused by excessive memory consumption during
delta generation. Both bsdiff and archive-patcher read the
entire old and new files into memory for delta generation,
which quickly exhausts server-side memory resources for
large APK files. We believe that a sliding window mecha-
nism (like the one used in xdelta3) is necessary to limit the
maximum memory usage during delta generation.

(ii) We find that common segments have locality and nor-
mal applications have better locality than game applications.
For example, 93.8% of common segments can be matched
in a 64MB window for WeChat, and 97.2% of common
segments can be matched in a 128MB window for Honkai
Impact 3. A typical window size of 128MB is appropriate
since larger window size would not significantly reduce the
delta size.

(iii) A non-negligible portion of APK files is compressed.
The archive-patcher algorithm utilizes the technique of
decompressing-before-differencing, yielding smaller com-
pression ratio since it preserves a higher similarity. Our
results also show that an average of 24% of bytes in the
APK cannot be decompressed with the current zlib [23]
tool used in archive-patcher. Otherwise, they cannot be re-
compressed in the same manner at the mobile side. This
result indicates that the potential of decompressing-before-
differencing is not fully exploited. On the other hand, our
study also reveals results that decompressing is not always
beneficial: decompressing-before-differencing yields worse
results than directly differencing for at least 5.6% files in the
APK.

(iv) HDiffPatch performs consistently better than bsdiff,
especially for large files. The reason is that HDiffPatch fur-
ther merges copy instructions, resulting in much fewer copy
instructions. We have deeply investigated the optimality
problem of merging copy instructions and find that the
current merging algorithm in HDiffPatch is still not optimal.

Our findings provide a deeper understanding of the con-
tributing factors and techniques of the performance differ-
ence among these differencing algorithms. We hope our re-
sults can help researchers identify opportunities for further
performance improvement. To illustrate how our findings
can be utilized, we have also proposed a novel algorithm,
sdiff, which achieves smaller compression ratio than state-
of-the-art algorithms by combining a set of existing tech-
niques, including decompressing-before-differencing, slid-
ing window, fast deduplication, and the HDiffPatch algo-
rithm.

Contributions. In summary, this paper makes the fol-
lowing contributions:

• We conduct the first systematic performance compari-
son of four differencing algorithms for mobile applica-
tion updates.

• We investigate and analyze key techniques (such
as decompressing-before-differencing, sliding window,
copy instructions merging) that influence the perfor-
mance of these algorithms. We have revealed four key
insights that could guide future algorithm design.

• We have proposed sdiff, a simple and better algorithm
with a smaller compression ratio by combining an
appropriately chosen set of key techniques.

• We have publicly made our data and code1 available to
facilitate for further study by other researchers.

2 RELATED WORK

2.1 Binary differencing algorithms

Researchers have proposed many differencing algorithms
over the years [4], [5], [6], [7]. The Linux utility diff can
generate deltas between texts fairly well. The Rsync algo-
rithm [24], operating at the block level, trades optimality for
performance and is suitable for synchronizing large files for
P2P applications. Researchers in the sensor network com-
munity have proposed many differencing algorithms for
firmware updates [8], e.g., delta++ [9], r2diff [10], r3diff [11],
DASA [12], and S2 [13]. DASA [12] and r3diff [11] can
generate the optimal delta size assuming a given set of
commands and cost measures in the delta file [14]. More
sophisticated differencing algorithms have appeared in re-
cent years, e.g., xdelta3 [15], bsdiff [16], HDiffPatch [17],
and archive-patcher [18] They are generally more suitable
for mobile app updates. The reasons are two-fold: first, they
handle large app files (i.e., APK files) more efficiently, and
second, they better exploit the computing power of mod-
ern smartphones by applying general compression (e.g.,
LZMA [25] and bzip2 [26]) to further reduce the delta size.

In this work, we aim to comprehensively understand the
major differencing algorithms utilized for mobile applica-
tion updates, with a specific emphasis on those actually
employed in app stores. The technical details of these al-
gorithms are introduced in Section 3.2.

2.2 Hot-patching algorithms for mobile app updates

Hot-patching, also known as live patching or dynamic soft-
ware updating, refers to the process of applying updates
or patches to a running program without the need for a
full restart or interruption of service. Recently, there are hot-
patching algorithms developed for mobile applications. For
instance, WeChat, a renowned social communication appli-
cation in China, employs the Tinker tool [27] for runtime
self-repair. A critical component of Tinker is DexDiff, an dif-
ferencing algorithm specifically designed for the dex format.
However, its use is limited to small updates of dex files in
hot-patching scenarios. It is not suitable for differencing (or
incremental) updates for app stores because the updates in
app store are relatively large and they involves updates for
binary libraries and resource files.

2.3 Differencing algorithms besides mobile app up-
dates

Recently, researchers have witnessed developments in dif-
ferencing algorithms in the fields of program analysis [28],
deep neural networks (DNN) [29], [30], and image process-
ing [31], [32], etc. For example, QADroid [28] is a tool for
performing regression testing on Android programs. It iden-
tifies version differences by constructing call graphs based
on FlowDroid and linking events. QD-Compressor [30] is

1. https://github.com/StephQAZ/sdiff

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 3

TABLE 1: Comparison of different differencing algorithms.

Algorithm Pros Cons Main techniques

xdelta3 [15]

(1) The shortest differ-
encing time
(2) Low memory foot-
print in differencing

The delta size of large
files are worst than bs-
diff.

(1) Uses hash match to find same segments.
(2) Uses source and target windows in differencing.
(3) Performs LZMA [25] to compress the delta file.

bsdiff [16]
For most cases, the
delta size is smaller
than xdelta3.

(1) The highest mem-
ory footprint in dif-
ferencing and recon-
structing stage.
(2) Long execution
time

(1) Exploits suffix array by reading all files into memory to find
same segments.
(2) Uses approximate matching.
(3) Uses bzip2 [26] to compress the delta file.

archive-patcher [18] The delta size of APKs
are smallest.

(1) High memory foot-
print
(2) Long execution
time

(1) Exploits decompressing-before-differencing (DBD) technique to
find more similarity.
(2) Uses an improved bsdiff algorithm.

HDiffPatch [17]

(1) For most cases, the
delta size is smaller
than xdelta3 and bsd-
iff.
(2) The differencing
time is shorter than bs-
diff.

(1) Differencing mem-
ory footprint is lower
than bsdiff but higher
than xdelta3.
(2) High CPU over-
head in differencing.

(1) Exploits suffix array (the time and space complexity is better
than bsdiff) by reading all files into memory to find same segments.
(2) Uses approximate matching.
(3) Uses zstd [33] to compress the delta file.
(4) Exploits multithreading.

a differencing algorithm aimed at DNN models. It per-
forms quantizing-before-differencing technique on two sim-
ilar DNN models, thus reduces the network transmission
volume for distributing and the storage size of checkpoints.
RIDDLE [31] is a differencing algorithm designed for Li-
dar data in autonomous driving to reduce data storage
overhead. imDedup [32] is specifically for JPEG images.
It improves JPEG similarities before differencing by first
performing Huffman decoding on JPEG images. Each of
these algorithms is specifically designed for the unique
structures of their processing objects, showcasing distinct
methodologies from those applied in mobile app updates.

3 BACKGROUND

In this section, we present relevant technical backgrounds.

3.1 APK file format
The Android application package (APK) file, which is re-
ally a ZIP archive file, holds all binary code, resources,
and other data required by the Android application. It
typically contains (i) Java binary codes (.dex); (ii) libraries
in ELF format (.so); and (iii) other resource files such as
.png and .jpg; (iv) the META-INF directory: contains files
related to the signing and verification of the application; (v)
AndroidManifest.xml: contains essential information about
the application for the Android system. It declares the app’s
package name, permissions, activities, services, etc.

An APK (or ZIP) archive contains many file entries and a
central directory. An individual file entry holds data for one
file in the APK. The central directory consists of many file
headers, which can be used to quickly obtain information
about the file list in the APK file. A file header records
important information about the corresponding file, e.g., the
file’s offset in the APK file, whether the data is compressed
or uncompressed (i.e., in store mode).

3.2 Differencing algorithms
xdelta3. xdelta3 is a classical differencing algorithm that
generates the delta between two files. It uses VCDIFF/RFC

3284 [34] streams, a standardized format for delta compres-
sion. There are three instruction types in its delta file, i.e.,
copy, add, and run. While the former two instructions
are widely used in other delta files (for copying a segment
from an old file or adding new bytes), the last one indicates
that a given byte will be repeated for a given number
of times. xdelta3 uses a sliding window mechanism for
common segment matching, i.e., it sets up a target window
in the new file and a corresponding source window in the
old file for common segment matching. This mechanism
can significantly reduce the memory consumption for delta
generation.

xdelta3 can not only allow copying common segments
from the old file but also copying common segments from
a partially reconstructed new file. It also employs various
techniques to compress the address fields before the default
LZMA [25] compression algorithm is applied to the delta
file. The xdelta3 algorithm is fast but may produce larger
deltas than other algorithms.

bsdiff. The bsdiff algorithm is also a well-known differ-
encing algorithm that focuses on achieving minimal delta
size and is specifically optimized for executable files. The
bsdiff algorithm uses its own custom delta file format. The
bsdiff delta file is composed of four parts, i.e., header, ctrl
block, diff block, and extra block. bsdiff generates instruc-
tions with the format (x,y,z) in the ctrl block: x denotes
the length of bytes to copy, y denotes the length of bytes
to add (the added bytes reside in the extra block), and z
denotes the adjusted pointer address. The bsdiff algorithm
uses a suffix array to find the longest common segments
between the two files. During the suffix array generation,
bsdiff uses qsufsort [35] algorithm to sort the suffixes in
lexicographical order.

Unlike xdelta3, bsdiff allows approximate matches
rather than exact matches, i.e., once two identical segments
have been identified by bsdiff, these two segments are
further extended, trying to find a match between similar and
longer segments. bsdiff allows a maximum of 50% dissimi-
larity between the segments, i.e., two segments are consid-
ered approximately matched if the number of mismatched

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 4

bytes is smaller than 50% of the total segment length. The
difference between approximately matched segments is en-
coded in the diff block. Approximate segment match is help-
ful in reducing the delta size because of two reasons. First, it
reduces the number of copy instructions. Second, although
additional differences between approximately matched seg-
ments are generated, they are compression-friendly, i.e.,
they can be easily compressed by general lossless compres-
sion algorithms such as LZMA [25] or bzip2 [26]. bsdiff uses
the default bzip2 algorithm to compress the delta.

HDiffPatch. HDiffPatch is another open-source differ-
encing algorithm that improves bsdiff in many aspects. First,
the differences in the diff block are firstly encoded by Run-
Length Encoding (RLE) [36]. Second, it uses the DivSuf-
Sort [37] algorithm in the suffix array generation process,
resulting in better time and space performance compared
with qsufsort employed in bsdiff. Third, it also allows
approximate segment match, but the maximum allowed
dissimilarity ratios differ for different segment lengths.
Fourth, HDiffPatch employs a novel copy instruction merg-
ing technique. Assume there exist two copy instructions: (1)
copy(l1, x, y): copy l1 bytes from location x in old file
to location y in the new file (2) copy(l2, x+n, y+n):
copy l2 bytes from location x+n in the old file to location
y+n in the new file. HDiffPatch will try to merge these two
copy instructions into one copy instruction copy(l1+l2+n, x,
y), with the n different bytes encoded in the RLE Ctrl block
using RLE. Fifth, it supports multi-threads in delta gener-
ation, e.g., it uses four threads for suffix sorting, common
segment matching, and delta compression by default. Sixth,
it employs fast deduplication before difference computation,
i.e., it first records the identical blocks between the old and
new files so that these identical blocks are not involved
in the difference computation process. Lastly, it uses the
zstd [33] algorithm for delta compression instead of the
default bzip2 algorithm in bsdiff.

archive-patcher. archive-patcher is a differencing algo-
rithm specifically designed for ZIP archives, including APK
files. Many files in the APK file are compressed using the
deflate algorithm [38]. It is beneficial to decompress them
before difference computation because the similarity be-
tween the old and new files can be better preserved. archive-
patcher uses such a technique, i.e., decompressing-before-
differencing. A problematic issue is that the reconstructed
new file needs to be re-compressed in the same manner as in
the original APK file to pass the integrity check. To address
this issue, archive-patcher enumerates all possible compres-
sion parameters and decompresses the compressed file only
when it can be re-compressed identically using appropriate
parameters. After decompression, archive-patcher uses an
improved bsdiff algorithm for difference computation. As
we will find in Section 5, the bsdiff algorithm used in
archive-patcher improves the performance of the original
bsdiff algorithm.

3.3 Comparison of the algorithms

Table 1 compares the algorithms we have described in the
previous section. The pros, cons, and main techniques in
Table 1 are concluded based on our evaluation results and
code analysis.

3.3.1 Similarities

All the mentioned differencing algorithms operate at the
byte level. They all use a mechanism to locate identical or
similar segments (for the copy instruction). They all use
lossless compression algorithms to compress the delta file
further.

3.3.2 Differences

They also differ in some important ways.
Segment matching. xdelta3 uses sliding window while

other algorithms read the entire old and new files into mem-
ory. xdelta3 uses a hash table to identify common segments
and only allows exactly matched segments for copying. Both
bsdiff and HDiffPatch use suffix arrays to identify common
segments, allowing approximately matched segments for
copying.

Compression of the delta. We notice that different dif-
ferencing algorithms have used different lossless compres-
sion algorithms to compress the delta, e.g., xdelta3 uses
LZMA [25], bsdiff uses bzip2 [26], and HDiffPatch uses
zstd [33]. They have different trade-offs between compres-
sion/decompression speed and compression ratio [39], [40].
Typically, (i) LZMA tends to outperform bzip2 and zstd in
terms of compression ratio but slower compression speed
and higher memory usage. (ii) zstd tends to have faster
compression and decompression speeds than LZMA and
bzip2, while still achieving high compression ratios with
tunable parameters. It also supports long-range search and
deduplication for better performance on large files.

Other important aspects. archive-patcher uses decom-
pressing before differencing for similarity preserving. HDiff-
Patch employs many other techniques, as we have described
in the last subsection, to improve the performance.

4 METHODOLOGY

Figure 1 shows an overview of our methodology, which
consists of five steps: (1) Getting APK files of different
versions for a given list of apps. (2) Compiling different
differencing algorithms. (3) Downloading all APK files to
the server and computing the delta for each app update. (4)
Dispatching a delta and the corresponding old APK file to
a mobile device and reconstructing the new APK file. (5)
Performance analysis.

Getting APK files. We first construct the APK dataset
used in the study, including normal (i.e., non-gaming) and
game apps. The category of normal apps encompasses 17
distinct subcategories, which include but are not limited
to finance, social communications, and entertainment, etc.
Specifically, we select 150 normal and 50 game apps with
most downloads in a popular App Market up until Nov.
14, 2022. The motivation behind selecting apps with the
highest downloads is that they are most important for key
metrics such as server outbound bandwidth and users’ QoE.
Each app includes two consecutive recent versions, for a
total of 400 APKs. There are a total of 200 update cases.
Table 2 shows a selection of 15 representative application
updates which are randomly chosen from our dataset. We
investigate the reasons for updates and observe that most
normal apps (e.g., WeChat, Baidu, and Alipay) typically

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 5

150 Normal apps

50 Game apps Spider

Server ClientAPK Dataset

① Get APK files

Old
version

New
version

4 Differential
algorithms

Delta file

Instrumenting
Testing Script

x4

⑤ Performance
analysis

…

…

③ Computing delta

App Market

Instrumenting
Testing Script

4 Differential
algorithms

④ Reconstructing new file

Open-source
code

② Compiling
diff. algorithms

Fig. 1: Methodology overview. It consists of five main steps: (1) Getting APK files (2) Compiling differencing algorithms
(3) Computing delta (3) Reconstructing new file (5) Performance analysis

TABLE 2: 15 Representative application updates. ⋆ indicates
that it is a game application.

Name Version Old size (B) New size (B)
WeChat 8.0.27→8.0.28 276,602,366 266,691,829
Baidu 13.19.5.10→13.21.0.11 137,200,701 137,805,661

Douyin 22.9.0→23.0.0 168,405,402 169,354,581
Weibo 12.10.2→12.11.0 206,500,685 207,162,286
Bilibili 7.3.0→7.4.0 102,429,902 101,626,272

QQ 8.9.15→8.9.18 311,322,716 307,940,064
Alipay 10.3.0.8000→10.3.10.8310 122,073,135 116,138,881
Youku 10.2.57→10.2.59 65,399,355 65,639,977
Zhihu 8.38.0→8.39.0 69,060,906 70,652,038

Jingdong 11.3.0→11.3.2 100,750,185 97,412,360
Harry Potter⋆ 1.20.211450→1.20.212190 1,961,481,727 2,131,374,029

Honkai Impact 3⋆ 6.0.0→6.1.0 613,738,862 634,074,809
PUBG Mobile⋆ 1.19.3→1.20.13 2,056,739,892 2,037,120,844

Ace Racer⋆ 4.0.6→4.1.0 2,030,659,990 2,032,064,158
Ninja Must Die 3⋆ 2.0.19→2.0.20 1,813,459,454 1,832,093,657

TABLE 3: Compilers and optimization levels used for the
differencing algorithms.

Algorithm Version Implem-
entation

Compiler
(Server)

Compiler
(Mobile)

Optim-
ization

xdelta3 [15] 3.1.0 C gcc
11.3.0

Clang
14.0 -O3

bsdiff [16] 4.3 C gcc
11.3.0

Clang
14.0 -O3

HDiffPatch [17] 4.4.0 C++ g++
11.3.0

Clang++
14.0 -O3

archive-patcher [18] 1.1 Java OpenJDK
1.8.0

OpenJDK
1.8.0 /

update for bug fixes. Conversely, most gaming apps (Harry
Potter and PUBG Mobile) update to add new features.

Compiling differencing algorithms. We download the
source codes of different differencing algorithms and com-
pile them on the server (CPU @2.10GHz with 20 cores, 16GB
DDR4 RAM @3200 MT/s) with Ubuntu 22.04 LTS. Table 3
shows the compilers and the optimization levels we have
used. Due to the Java implementation of archive-patcher, we
use OpenJDK 1.8.0 to compile and execute Java bytecodes
on the server. To run the archive-patcher on the mobile side,
we first compile and archive the Java source code to a JAR
file with OpenJDK 1.8.0. Then we use Android 10 build-
tools dx to convert the JAR file into a .dex file. Finally, we
run the .dex file of archive-patcher with Dalvik VM on the
mobile phone.

Computing delta at the server side. All APK files are
downloaded to the server, where different algorithms com-
pute the delta files. Without otherwise specified, we use the
default parameter settings in these algorithms. For example,
we use the default source window size of 64MB and target

window size of 8MB in xdelta3. We also use a default thread
number of four in HDiffPatch.

For performance measurements, we write scripts that
use the tool of /usr/bin/time to capture various metrics
related to algorithm execution, including user time, system
time, and maximum resident set size. The execution time
of the differencing algorithm is calculated as the sum of
user and system time, while the maximum resident set size
provides insight into peak memory usage. For assessing
average memory usage, we utilize the mprof tool, which
records memory consumption at regular 100ms intervals.

Reconstructing the new file at the mobile side. We run
reconstructing algorithms on a mobile phone, ZTE Axon 10
(Snapdragon 855 CPU@2.8GHz with 8 cores, 6GB RAM).
The mobile device uses Android 10 with kernel 4.14.117.
After receiving a delta and the corresponding old APK file,
the mobile device reconstructs the new APK file using the
compiled algorithms. We use the simpleperf to record the
task clocks of the CPU. We also employ the mprof tool that
records memory usage at regular 10ms intervals.

To minimize interference from other background tasks
running on either the server or the mobile, we clear the
extraneous background tasks of the device before each eval-
uation. Besides, we disable wireless and cellular connections
to avoid influencing the mobile device. To ensure that the
results on the phone are not impacted by the throttle, we
lock the CPU frequency with the same value for each tested
algorithm. In addition, we conduct experiments under con-
ditions of ventilation and heat dissipation. An external radi-
ator is also attached to the back cover of the mobile phone
to enhance cooling. Furthermore, we ensure there were
sufficient time gaps between each test, setting a minimum
interval of one minute. During the experiment, we monitor
the mobile phone’s temperature to asses heating.

Performance analysis. We analyze the performance of
differencing algorithms in terms of five key metrics:

• Compression ratio. The compression ratio is defined as the
ratio between the delta size and the size of the new file.
A smaller compression ratio is preferred as it saves more
network bandwidth.

• Differencing time. It is time to generate a delta on the server
side.

• Differencing memory overhead. We measure both average
and peak memory usage during the differencing phase
on the server side.

• Reconstruction time. It is time to reconstruct the new file

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 6

0.0 0.5
Compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
xdelta3
bsdiff
archive-patcher
HDiffPatch

0 500
Diff. time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

xdelta3
bsdiff
archive-patcher
HDiffPatch

0 2000 4000
Diff. avg. mem. (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

xdelta3
bsdiff
archive-patcher
HDiffPatch

0 20
Rec. time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

xdelta3
bsdiff
archive-patcher
HDiffPatch

0 100 200 300
Rec. avg. mem. (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

xdelta3
bsdiff
archive-patcher
HDiffPatch

Fig. 2: Comparison of different algorithms in terms of five key metrics for 200 app updates.

WeChat
Baidu

Douyin
Weibo

Bilibili QQ
Alipay

Youku
Zhihu

Jingdong

Harry Potter

Honkai Im
pact 3

PUBG Mobile

Ace Racer

Ninja Must Die 3
0.0
0.2
0.4
0.6
0.8
1.0

Fi
le

 s
iz

e
di

st
rib

ut
io

n
by

 ty
pe DEX (deflate)

DEX (store)
SO (deflate)
SO (store)

SO/ZIP (store)
PNG (deflate)

PNG (store)
PNG/ZIP (store)

ZIP (deflate)
ZIP (store)

Others (deflate)
Others (store)

(a)

WeChat
Baidu

Douyin
Weibo

Bilibili QQ
Alipay

Youku
Zhihu

Jingdong

Harry Potter

Honkai Im
pact 3

PUBG Mobile

Ace Racer

Ninja Must Die 3
0.0

0.2

0.4

0.6

0.8

1.0

C
om

pr
es

si
on

 R
at

io
 L

ow
er

 is
 b

et
te

r

xdelta bsdiff archive-patcher HDiffPatch

(b)

0

200

400

600

800

D
iff

er
en

ci
ng

 ti
m

e
(s

ec
) xdelta bsdiff archive-patcher HDiffPatch

0

250

500

750

1000

(c)

0

2000

4000
D

iff
er

en
ci

ng
 m

em
or

y
 u

sa
ge

 (M
B

) Peak Average

0

2500

5000

7500

10000

(d)

WeChat
Baidu

Douyin
Weibo

Bilibili QQ
Alipay

Youku
Zhihu

Jingdong
0

10

20

R
ec

on
st

ru
ct

in
g

tim
e

(s
ec

)

Normal Apps
Harry Potter

Honkai Im
pact 3

PUBG Mobile

Ace Racer

Ninja Must Die 3

Game Apps

0

50

100

150

200

(e)

WeChat
Baidu

Douyin
Weibo

Bilibili QQ
Alipay

Youku
Zhihu

Jingdong
0

200

400

600

R
ec

on
st

ru
ct

in
g

m
em

or
y

us
ag

e
(M

B
)

Normal Apps

Peak
Average

Harry Potter

Honkai Im
pact 3

PUBG Mobile

Ace Racer

Ninja Must Die 3

Game Apps

0

500

1000

(f)

Fig. 3: APK file decomposition and overall performance in terms of five key metrics for 15 representative app updates.
(a) ⋆ indicates the old version, and • indicates the new version. The A/B means the file extension name is A, but the
actual file type (according to the magic number) is B. (b) Compression ratio. (c) Differencing time. (d) Differencing memory
consumption. (e) Reconstructing time. (f) Reconstructing memory consumption.

from the delta and the corresponding old file on the
mobile side.

• Reconstruction memory overhead. We measure both average
and peak memory usage during the reconstruction phase
on the mobile side.

5 OVERALL MEASUREMENT RESULTS

Figure 2 compares four differencing algorithms with respect
to the five metrics. We can see that: (i) archive-patcher is
much better than other algorithms in terms of compression
ratio, while other algorithms achieves similar performance

in terms of compression ratio. (ii) At the differencing stage,
the average memory usage of xdelta3 is universally better
than other algorithms at the differencing stage, due to
its sliding window mechanism. (iii) At the reconstruction
stage, the execution times of HDiffPatch and xdelta3 are
similar, while the average memory overhead of HDiffPatch
is smaller than xdelta3.

To carefully study how each algorithm performs on each
individual application, we show the detailed performance
for 15 representative applications. We conduct 10 runs on
the same device and environments and take the average
value of multiple runs. The error bars in Figure 3(c) and

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 7

Figure 3(e) are 95% confidence intervals under the student’s
t-distribution. Figure 3(a) shows the fraction of different file
types in the APK files for 15 representative applications.
Three observations can be made: (i) Normal applications
are mainly composed of .dex, .so, and .png files, while game
applications are quite different: we find that a large portion
of game applications are specific resource files, e.g., .mpk
files and .npk files. (ii) A large component of the applications
(especially for normal applications) is compressed using the
deflate algorithm. (iii) Occasionally, a file extension may
not precisely indicate the actual file type. For example,
some files with the extension .png are actually ZIP files, as
indicated by their file magic number.

Figure 3(b) shows the compression ratio for represen-
tative app updates. We can see that (i) For normal appli-
cations, the compression ratios of xdelta3, bsdiff, and HD-
iffPatch are comparable. However, for game applications,
HDiffPatch outperforms xdelta3 and bsdiff significantly. (ii)
bsdiff and archive-patcher encounter failures in some cases,
e.g., for Harry Potter, PUBG Mobile, and Ace Racer. (iii)
archive-patcher is substantially better than other algorithms
for some applications, such as Bilibili and Jingdong.

Figure 3(c) shows the differencing time at the server
side. The results show that: (i) xdelta3’s differencing time is
significantly shorter than other algorithms mainly due to its
sliding window and hash-based matching mechanism. (ii)
HDiffPatch is better than both bsdiff and archive-patcher
due to its additional mechanisms, e.g., fast deduplication
and multithreading. (iii) it is surprising that archive-patcher
is even better than bsdiff as archive-patcher uses bsdiff for
difference computation after it decompresses files in APK.
After a closer look, we find that archive-patcher uses an
optimized version of bsdiff, e.g., it uses the DivSufSort [37]
suffix array sorting algorithm, which is faster than the qsuf-
sort [35] algorithm used by the original bsdiff algorithm.

Figure 3(d) compares the differencing memory con-
sumption of different algorithms. We have the following
observations: (i) xdelta3 has the lowest memory usage
because it utilizes a sliding window mechanism. (ii) The
lower memory usage of HDiffPatch compared to bsdiff and
archive-patcher is mainly to its use of fast deduplication.
(iii) For the WeChat app, the memory usage of archive-
patcher is lower than bsdiff, while the opposite is true
for the Zhihu app. It is worth noting that there are two
contradicting factors. One factor is that archive-patcher’s
decompressing-before-differencing technique increases the
input size for difference computation. The other factor is
that archive-patcher uses an optimized bsdiff with a lower
space complexity than the original bsdiff. Therefore, the
ultimate outcome is determined by which of two factors
plays a more important role.

Figure 3(e) compares the reconstruction time of different
algorithms at the mobile side. Our observations are as
follows: (i) HDiffPatch exhibits the shortest execution time
on mobile devices, since it uses much fewer instructions in
the delta file. (ii) xdelta3 demonstrates significantly slower
reconstruction time for large files, especially for the Harry
Potter game app. (iii) archive-patcher encounters failures
during the reconstruction process on mobile devices, such
as WeChat and QQ applications.

Figure 3(f) shows the average and peak memory con-

0 10 20 30 40 50 60
Time (sec)

0
2
4
6
8

10
12
14

M
em

or
y

us
ag

e
(G

B
)

(a)

0 10 20 30 40 50 60 70
Time (sec)

0
2
4
6
8

10

M
em

or
y

us
ag

e
(G

B
)

(b)

Fig. 4: Memory consumption during delta generation. (a) bs-
diff for the PUBG Mobie app. (b) HDiffPatch for artificially
constructed files.

sumption of reconstruction for different algorithms. We can
observe that bsdiff has significantly higher memory usage
for reconstructing all applications than other algorithms,
especially for WeChat, QQ, and Honkai Impact 3 apps. This
is because bsdiff reads the entire delta files into memory for
reconstruction. All other algorithms allocate a fixed buffer
for stream-based reconstruction, effectively reducing the
memory usage at the mobile side.

6 DEEPER ANALYSIS

In this section, we aim to answer the underlying reasons for
some important research questions (RQs) revealed by the
observations described in the previous section.

• RQ1 (Section 6.1): Why do bsdiff and archive-patcher
fail in some cases in the differencing stage, and why
archive-patcher fails in some cases in the reconstruction
stage?

• RQ2 (Section 6.2): While the sliding window mecha-
nism effectively reduces the differencing memory con-
sumption, it may sacrifice performance in terms of
the compression ratio. How to appropriately set the
window size?

• RQ3 (Section 6.3): Why does the decompressing-before-
differencing technique employed in archive-patcher re-
sult in a significantly better compression ratio than
other algorithms? Why is it less effective for some other
applications?

• RQ4 (Section 6.4): Why HDiffPatch has a consistently
better compression ratio than bsdiff?

We intend to answer these questions in the following sub-
sections, respectively.

6.1 Failure analysis
Server-side bsdiff failure analysis. In Figure 3(b), we find
that bsdiff fails for four game applications. To investigate the
underlying reasons, we consider the PUBG Mobile app as an
example. Figure 4(a) shows bsdiff’s memory consumption
during its delta generation stage. We find that at the time of
50 sec, bsdiff has already consumed ∼14GB of memory and
is still requesting more memory from the system, exceeding
the maximum memory allowed for a single program in our
operating system and is thus directly killed by the system.
The underlying reason is that bsdiff reads the entire old
and new files into memory during delta generation. This

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 8

may cause failures due to excessive memory consumption,
especially for game apps with large APK files.

Server-side HDiffPatch potential failure analysis. We
note that HDiffPatch adopts a similar approach of reading
the entire old and new files. However, it does not cause
failures in our cases. This is due to additional techniques,
such as fast deduplication, which mitigate memory con-
sumption in the delta generation process. For huge files,
we conjecture that HDiffPatch may also fail due to the same
reason. We manually construct 10GB of old and 10GB of new
files and let HDiffPatch generate the delta. Figure 4(b) shows
the memory consumption during the execution. We notice
that at around 60 seconds, HDiffPatch already consumes
10GB of memory. Hence, the algorithm fails when it requests
additional memory afterward.

Server-side archive-patcher failure analysis. For
archive-patcher, it is expected that it fails when bsdiff fails
since archive-patcher employs bsdiff for difference compu-
tation. Figure 3(b) shows that bsdiff succeeds and archive-
patcher fails for one game application (Honkai Impact 3
app). After a careful check, we find that this was due to the
implementation of the Google source code, which checks
the size of the decompressed files and throws an exception
if they exceed 512 MB. This threshold should be relaxed for
game applications to ensure the successful execution of the
differencing algorithm on the server side.

Mobile side archive-patcher failure analysis. Fig-
ure 3(e) shows that archive-patcher encounters failures dur-
ing the reconstruction process on mobile devices, even for
normal applications, such as WeChat and QQ. After a care-
ful check, we find that the algorithm places the temporally
reconstructed new files in the default /tmp/ directory [41],
which occasionally encounters failures when there is no
sufficient space. To address this problem, we can modify the
source code to place the temporal files in another dedicated
directory with sufficient space and remove them when they
are no longer needed.

Insight ❶: While some failures can be addressed by either
relaxing the threshold or modifying the temporal directory, it
requires a more systematic approach to addressing failures caused
by excessive memory consumption during delta generation. We
believe that a sliding window mechanism (like the one used in
xdelta3) is necessary to limit the maximum memory usage during
delta generation.

6.2 The sliding window mechanism

While the sliding window mechanism can help address
the excessive memory usage during the delta generation
process, it inevitably sacrifices the compression ratio since
common segments may not be found outside the window.
Therefore, how to set up an appropriate window size be-
comes a critical issue.

To answer this question, we employ the common seg-
ment matching algorithm used in HDiffPatch, i.e., reading
the entire old and new files into memory and using a suffix
array to find the common segments. We investigate the
relative distance of common segments, i.e., the difference
between the starting address of the segment in the new
file and the starting address of the corresponding segment
in the old file. Figure 5(a) shows the CDF of the distances

2000 1000 0 1000
Distance (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F WeChat
Harry Potter
PUBG Mobile

(a)

242526 27 28 29

Source window size (MB)

25

30

35

40

45

50

C
om

pr
es

si
on

 ra
tio

 (%
)

Normal apps
Game apps

(b)

Fig. 5: (a) CDF of the distances for all common segments. (b)
xdelta3’s average compression ratios with different window
sizes.

WeChat
Baidu

Douyin
Weibo

Bilibili QQ
Alipay

Youku
Zhihu

Jingdong

Harry Potter

Honkai Im
pact 3

PUBG Mobile

Ace Racer

Ninja Must Die 3

Benchmarks

0.0
0.2
0.4
0.6
0.8
1.0

D
ec

om
pr

es
si

on
 ra

tio
Fig. 6: archive-patcher’s decompression ratios for represen-
tative apps.

for all common segments. We find that common segments
have locality, and normal application has better locality
than game applications. For example, 93.8% of common
segments in WeChat are within a 64MB (i.e., [-32MB, 32MB])
window; 97.2% of common segments in Honkai Impact 3 are
within a 128MB (i.e., [-64MB, 64MB]) window.

To further investigate which size the sliding window
should be, we set different window sizes in the xdelta3
algorithm. Figure 5(b) shows the average compression ratio
with different window sizes for 200 app updates. We can
see that: (i) For normal applications, a window size of
64MB is appropriate since a larger window size would not
significantly reduce the delta size; (ii) For game applications,
a windows size of 128MB is appropriate for the same reason.

Insight ❷: Common segments have locality, and normal
applications have better locality than game applications. A typical
window size of 128MB is appropriate since a larger one would not
significantly reduce the delta size.

6.3 Decompressing before differencing

The archive-patcher algorithm employs the technique of
decompressing-before-differencing, and we find that it sig-
nificantly reduces the delta sizes for some apps, e.g., Bilibili
and Jingdong. To investigate the underlying reasons, we
calculate the decompression ratio, which is defined as the
ratio between the number of bytes that can be decompressed
and the total number of bytes that are compressed in an APK
file. Note that not all bytes can be decompressed since they
should be re-compressed in the same manner on the mobile
side. Otherwise, they cannot pass the integrity check.

Figure 6 shows the decompression ratios for the repre-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 9

Differencing result of bsdiff for Xingtu app (version 6.6.0)

Differencing result of archive-patcher for Xingtu app (version 6.6.0)

(a)
Differencing result of bsdiff for Alipay app (version 10.3.10.8310)

Differencing result of archive-patcher for Alipay app (version 10.3.10.8310)

(b)
Fig. 7: Differencing results of bsdiff and archive-patcher
for two app updates. In the rectangle, the added bytes are
indicated in black color, and the copied bytes are indicated
in grey color. (a) The case where decompressing-before-
differencing is beneficial. (b) The case where decompresing-
before-differencing is not beneficial.

sentative applications. We make three observations. (i) For
normal applications, only Bilibili and Jingdong show a high
decompression ratio. This observation is consistent with
the results observed in Figure 3(b), where archive-patcher
results in significantly smaller delta sizes. (ii) For other nor-
mal apps, the decompression ratios are low. This indicates
that a large portion of compressed files cannot be decom-
pressed because the specific compression parameters (e.g.,
compression levels) cannot be guessed using the current zlib
library employed in archive-patcher (i.e., Java.util.zip).
(iii) For the game apps, although the decompression ratio
is high, archive-patcher does not show benefits because it
encounters failures due to reasons described in Section 6.1.

Decompressing-before-differencing results in a smaller
delta file since it can preserve a significant similarity be-
tween the old and new files. Figure 7(a) shows a case where
the top rectangle visualizes differencing results of bsdiff
and the bottom rectangle visualizes differencing results of
archive-patcher. In the rectangle, the added bytes are indi-
cated in black color, and the copied bytes are indicated in
grey color. We can see that: (i) the number of added bytes
is relatively high when comparing the original APK files;
(ii) the number of added bytes drastically decreases when
comparing decompressed APK files. On the other hand,
decompressing-before-differencing is not always effective.
Figure 7(b) shows such a case. We can see that the number
of added bytes remains almost the same whether the files in
APK are decompressed or not.

To quantify the benefits of decompressing, we compare
the sizes of delta generated by bsdiff and archive-patcher for
a pair of compressed files (e.g., for a compressed .dex) with
the same name in the APK files. Specifically, the number
of reduced bytes for a pair of files RB is defined as the
difference between the delta size generated by bsdiff and
the delta size generated by archive-patcher. A positive value
of RB indicates that decompressing-before-differencing is
beneficial, while a negative value of RB indicates that
this technique is not beneficial. We calculate the number
of reduced bytes for a total of 318,221 updated pairs of
compressed files in our APK files. Figure 8 shows the CDF of
the reduced bytes for normal apps and game apps. We can

0-101-103 101 103 105 107 0-101 101 103 105 107

Fig. 8: CDF of reduced bytes (RB). (a) normal apps (b) game
apps.

see that 8.3% (for normal apps) and 5.6% (for game apps)
of the files exhibit negative benefits when decompressing-
before-differencing is applied. One possible reason is that
the modifications made to the file are too substantial, result-
ing in small similarity even if they are decompressed.

It is also worth noting that decompressing will cause
additional overhead on both the server and mobile sides.
On the server side, the algorithm should guess the possible
compression parameters and decompress the compressed
file only when it can be re-compressed identically using
the guessed parameters. On the mobile side, the algorithm
should re-compress the newly constructed files if they are
decompressed on the server side. Considering these factors,
a file may not deserve decompression if it shows a small
improvement in the number of reduced bytes.

Insight ❸: Decompressing-before-differencing can preserve
the file similarity and effectively reduce delta file size. On one
hand, a large portion of files is left uncompressed in APK files,
indicating that the potential of this technique is not fully exploited.
On the other hand, decompressing is not always beneficial.

6.4 Copying instruction merging
We observe that HDiffPatch consistently outperforms bsdiff
in terms of delta size. For some applications, the reduction
in delta size is significant.

To investigate the underlying reasons, we analyze differ-
ent components in the delta files. The delta formats of bsdiff
and HDiffPatch are similar. There are ctrl block, diff block,
and extra block. The ctrl block stores instructions, the diff
block stores the difference between the new segment and
the copied segment, and this difference is encoded using a
RLE scheme, and the extra block stores the added bytes.

Figure 9(a) shows the difference between bsdiff and
HDiffPatch for three different components described above.
A positive value indicates that HDiffPatch yields a smaller
component size. We can see that in our representative
applications, the ctrl blocks generated by HDiffPatch are
consistently smaller than those generated by bsdiff, while
this is not necessarily true for the remaining two blocks. As
long as the sum of the three components remains positive,
HDiffPatch yields a smaller delta file.

Figure 9(b) shows the number of copy instructions in
the ctrl block for bsdiff and HDiffPatch, respectively. We
can see that HDiffPatch results in a significant reduction in
the number of copy instructions: The instruction count of
bsdiff is ∼2x that of HDiffPatch. After a careful study of the
internal mechanisms of HDiffPatch, we find that HDiffPatch
employs a copy instruction merging technique to reduce the
number of instructions to reduce the final delta file size.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 10

WeChat
Baidu

Douyin
Weibo

Bilibili QQ
Alipay

Youku
Zhihu

Jingdong

Harry Potter

Honkai Im
pact 3

PUBG Mobile

Ace Racer

Ninja Must Die 3

Benchmarks

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

D
el

ta
 s

iz
e

(M
B

)

Ctrl block size Diff block size Extra block size

(a)

WeChat
Baidu

Douyin
Weibo

Bilibili QQ
Alipay

Youku
Zhihu

Jingdong
0.00

0.05

0.10

of

 in
st

ru
ct

io
ns

 (1
0e

6)

Normal Apps

bsdiff HDiffPatch

Harry Potter

Honkai Im
pact 3

PUBG Mobile

Ace Racer

Ninja Must Die 3

Game Apps

0.00

0.25

0.50

0.75

1.00

(b)

Fig. 9: (a) the difference between bsdiff and HDiffPatch for
three different components in delta file. A positive value
indicates that HDiffPatch yields a smaller component size.
(b) the number of copy instructions in the ctrl block.

HDiffPatch calculates a cost for reconstructing the new
file, which can be approximately regarded as the delta size
without final compression. We use the example shown in
Figure 10 to explain the copy instruction merging technique
used in HDiffPatch. This technique works as follows:

(1) Find common segments. In Figure 10(a), the algo-
rithm has identified three common segments in the orange
color. Calculate the cost of directly copying these segments
and adding the rest of bytes. We can assume the cost of
copy instruction itself is three bytes (see details of HDiff-
Patch’s copy instruction in Section 3.2). The cost of add
instruction itself is none because we can identify what data
is carried by the add instruction only by the length of
the copy instruction. Additionally, the cost of data in copy
instruction is the encoded size after RLE processing while
in add instruction is the added byte size. As shown in
Figure 10(a), the total cost is (3+2)+3+(3+2)+12+(3+2)=30
bytes. Note that HDiffPatch (as well as bsdiff) can copy not
only identical segments but also similar segments, and the
additional segment difference (encoded using RLE) is added
to the copied segment to generate the final segment in the
new file. For example, the cost of the segment difference of
(0,0,0,0,0) is 2 bytes when RLE is applied (i.e., five zeros, one
byte encodes five and another byte encodes zero).

(2) For each common segment, seek for opportunities
whether it can be merged with the next copy instruction.
In Figure 10(b), the algorithm tries to merge the first copy
instruction and the second copy instruction. HDiffPatch will
perform this operation since the newly calculated cost is
(3+6)+12+(3+2)=26 bytes, smaller than without this merging
operation.

(3) Repeat step (2) until there is no improvement. Fig-
ure 10(c) shows that the algorithm tries to merge the first
copy instruction and the last copy instruction. Note that
merging of two copy instructions is only possible when the

lengths of bytes in between are identical in the old and new
files. Therefore, HDiffPatch needs to move the first common
segment right for one byte in the new file, as illustrated in
Figure 10(c). Finally, HDiffPatch ends up in the situation
illustrated in Figure 10(d), with one added byte and one
large copy instruction. The final cost is 1+(3+20)=24 bytes.

However, we find that HDiffPatch does not necessarily
generate the optimal results after its copy instruction merg-
ing mechanism. Figure 10(right) shows such a situation. A
better result can be achieved by trying to merge the second
and third copy instructions. For this purpose, the second
common segment needs to be moved to the right for one
byte in the new file in the first place as illustrated in Fig-
ure 10(e). In this situation, the final cost is (3+2)+4+(3+4)=16
bytes after merging, as illustrated in Figure 10(f). Note
that HDiffPatch cannot find this solution since it adopts a
greedy algorithm that sequentially checks whether a copy
instruction can be merged with the next copy instruction.

Insight ❹: HDiffPatch outperforms bsdiff mainly due to
the technique of copy instruction merging. However, the current
merging algorithm in HDiffPatch is still not optimal.

7 NEW ALGORITHM WITH SMALLER COMPRES-
SION RATIO

In this section, we demonstrate that we can easily build a
new algorithm with a smaller compression ratio, guided
by the insights revealed by our measurement study. Our
algorithm, called sdiff, combines several existing techniques
for reducing the delta size. First, it uses the fast dedu-
plication technique used in HDiffPatch to preprocess the
old and new files so as to improve the time and memory
performance in the differencing stage. Second, it uses the
sliding window mechanism employed in xdelta3 to limit
the maximum memory usage so as to avoid possible failures
during delta generation as well as reducing the memory in
the differencing stage. Third, it adopts the decompressing-
before-differencing technique employed in archive-patcher
since this technique preserves the similarity between old
and new files. Finally, it uses the HDiffPatch differencing
algorithm since it performs consistently better than other
algorithms such as xdelta3 and bsdiff.

Algorithm 1 and Algorithm 2 show the pseudocode for
delta generation and new file reconstruction. In Algorithm 1,
we first get a list of files which have been updated. We
then perform fast deduplication to identify identical blocks
between old and new files. Note that we cannot remove
blocks within compressed files in the new APK. Otherwise,
these files cannot be decompressed correctly. Afterwards,
we use the perform difference computation within the
sliding windows: we first try to decompress the files if
it is possible; we then reuse the HDiffPatch algorithm to
generate the difference within the sliding window. Finally,
we write metadata to the delta and reuse zstd to further
compress the delta file. Algorithm 2 reconstructs the new
APK file using the old APK file and the delta.

We have also conducted experiments to compare our
new algorithm with other algorithms we have studied in
this paper. We evaluate sdiff with 200 app updates using
the same methodology (see details in Section 4). We have
used a sufficiently large window size of 500MB so as to

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 11

m n b j h i h h h 2 3 4 5 6 e r r r r r 3 4 5 6 7 n n n n n n n n
m n b j h i g g g 2 3 4 5 6 7 f s s s s s 4 5 6 7 8 n n n n n n n n

Old file

New file

m n b j h i h h h 2 3 4 5 6 e r r r r r 3 4 5 6 7 n n n n n n n n
m n b j h i g g g 2 3 4 5 6 7 f s s s s s 4 5 6 7 8 n n n n n n n n

m n b j h i h h h 2 3 4 5 6 e r r r r r 3 4 5 6 7 n n n n n n n n
m n b j h i g g g 2 3 4 5 6 7 f s s s s s 4 5 6 7 8 n n n n n n n n

m n b j h i h h h 2 3 4 5 6 e r r r r r 3 4 5 6 7 n n n n n n n n
m n b j h i g g g 2 3 4 5 6 7 f s s s s s 4 5 6 7 8 n n n n n n n n

Copy ins.: 3B
seg. diff: 2B (0, 0, 0, 0, 0, 0)

added: 3B added bytes: 12B
Copy ins.: 3B
seg. diff: 2B (0, 0, 0, 0, 0)

m n b j h i h h h 2 3 4 5 6 e r r r r r 3 4 5 6 7 n n n n n n n n
m n b j h i g g g 2 3 4 5 6 7 f s s s s s 4 5 6 7 8 n n n n n n n n

m n b j h i h h h 2 3 4 5 6 e r r r r r 3 4 5 6 7 n n n n n n n n
m n b j h i g g g 2 3 4 5 6 7 f s s s s s 4 5 6 7 8 n n n n n n n n

② HDiffPatch tries to merge the first two copy instructions

③ HDiffPatch moves the first common segment

④ HDiffPatch tries to merge the two copy instructions

② Move the second common segment right for one byte

③ Try to merge the last copy instructions

Copy ins.: 3B
seg. diff: 2B (0, 0, 0, 0, 0,
0, 0, 0)

Copy ins.: 3B
seg. diff: 6B (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0)

added bytes: 12B

Copy ins.: 3B
seg. diff: 2B (0, 0, 0, 0, 0, 0, 0, 0)

① Find three common segments

Copy ins.: 3B
seg. diff: 20B (1, -12, 8, -2, 1, -1, 1, 1, -53, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

added bytes: 1B

Copy ins.: 3B
seg. diff: 2B (0, 0, 0, 0, 0, 0)

added bytes: 4B Copy ins.: 3B
seg. diff: 4B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

(a)

(b)

(d)

(c)

(e)

(f)

HDiffPatch process A better solution

: Common segment

: Similar segment

Copy ins.: Copy instruction

seg. diff: Segment difference

m n b j h i h h h 2 3 4 5 6 e r r r r r 3 4 5 6 7 n n n n n n n n
m n b j h i g g g 2 3 4 5 6 7 f s s s s s 4 5 6 7 8 n n n n n n n n

Old file

New file

Copy ins.: 3B
seg. diff: 2B (0, 0, 0, 0, 0, 0)

added: 3B added bytes: 12B
Copy ins.: 3B
seg. diff: 2B (0, 0, 0, 0, 0)

Copy ins.: 3B
seg. diff: 2B (0, 0, 0, 0, 0,
0, 0, 0)

① Find three common segments

(a)

Fig. 10: The process of copy instruction merging. The left flow in the figure (a→b→c→d) illustrates the HDiffPatch process,
while the right flow in the figure (a→e→f) represents a new approach that yields a better result.

Algorithm 1: sdiff (differencing phase)
Input : old source APK Aold, new target APK Anew,

source window size Sold, target window size
Snew

Output: delta file ∆
1 // Get a list of pairs of files in APK that have changed.
2 L← {(fold(i), fnew(i))}ni=1, fnew(i) ∈ Anew and fold(i) is

the corresponding file in Aold, fnew(i) ̸= fold(i)
3 Perform fast deduplication on Aold and Anew except for

bytes in fnew(i) that is compressed, write copy
instructions to ∆.

4 Wnew ← [0, Snew]
5 while Wnew does not reach the end of Anew do
6 Find corresponding Wold
7 Bnew ← bytes within Wnew in Anew
8 Bold ← bytes within Wold in Aold
9 for each file fnew whose start offset is in Wnew do

10 if fnew ∈ L and fnew is compressed then
11 try to decompress fnew and update Bnew

with decompressed fnew
12 if fold is compressed then
13 decompress fold and update Bold with

decompressed fold

14 Perform HDiffPatch (without zstd) between Bold
and Bnew and write instructions to ∆

15 Wnew moves right for Snew bytes

16 Add metadata LD to ∆ where LD denotes the set of
files in Aold that require decompression during
reconstruction.

17 Add metadata LC to ∆ where LC denotes the set of
files that require re-compression during
reconstruction.

18 Perform zstd compression on ∆

mitigate its negative impact on the compression ratio. Ta-
ble 4 shows the evaluation results for 200 app updates with
respect to five metrics described in Section 4. We can see
that: (i) sdiff achieves the best compression ratio, i.e., 7.8%

Algorithm 2: spatch (reconstruction phase)
Input : old source APK Aold, delta file ∆
Output: new target APK Anew

1 Perform zstd decompression on ∆
2 From ∆, get file list LD in Aold in which the files

require decompression
3 From ∆, get file list LC in which the files require

re-compression
4 for each file fold in Aold do
5 if fold in LD then
6 update Aold with decompressed fold

7 for each instruction i in ∆ do
8 reconstruct Anew according to i

9 for each fnew in LC do
10 update Anew with compressed fnew

TABLE 4: Comparison of sdiff with four other algorithms for
200 app updates. M1: Compression ratio. M2: Differencing
time. M3: Differencing memory usage. M4: Reconstructing
time. M5: Reconstructing memory usage.

Algorithm Metric
M1 M2 M3 M4 M5

xdelta3 43.28% 10.02 sec 139.51 MB 0.99 sec 64.91 MB
bsdiff 42.57% 170.12 sec 1414.40 MB 5.46 sec 131.29 MB

archive-patcher 31.58% 123.20 sec 1106.22 MB 6.56 sec 61.35 MB
HDiffPatch 42.00% 27.17 sec 440.14 MB 0.46 sec 28.48 MB
sdiff (Ours) 28.99% 32.23 sec 129.54 MB 2.40 sec 47.44 MB

reduction compared with the best state of the art, archive-
patcher. (ii) sdiff uses the smallest memory during delta
generation since it utilizes the sliding window mechanism
and fast deduplication techniques. (iii) sdiff has a smaller
reconstruction time compared with archive-patcher due to
its use of the C version of zlib for fast decompression. (iv)
Compared with archive-patcher, sdiff significantly reduces
the differencing time and memory overhead as well as the
reconstruction time and memory overhead.

The overall cost of sdiff can be assessed through two
aspects: latency and processing power. We first analyze the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 12

TABLE 5: Cost of client-side processing power for updating the Weibo application from version 12.10.2 to 12.11.0. The delta
size generated by sdiff is 67.0MB, and the new version size is 207.2MB. The battery capacity of our phone is 4000mAh.

Differencing algorithm Network type
Energy consumption

% of Battery consumption
Transmission Reconstruction Total

sdiff
5G 67MB*5.85*10−8mAh/bit = 31.356 mAh 0.0416mAh 31.40mAh 0.79

WiFi 67MB*2.12*10−8mAh/bit = 11.363mAh 0.0416mAh 11.30mAh 0.28

None
5G 207.2MB*5.85*10−8mAh/bit = 96.970mAh 0 96.97mAh 2.42

WiFi 207.2MB*2.12*10−8mAh/bit = 35.141mAh 0 35.14mAh 0.88

end-to-end latency. The end-to-end latency of sdiff con-
sists of downloading time and reconstruction time. The
downloading time depends on the network bandwidth. For
example, the delta size of two Weibo application versions
(v12.10.2→v12.11.0) which is generated by sdiff is 67.0MB,
and the size of the new version (v12.11.0) is 207.2MB. The
reconstruction time of this update on the mobile is 1.1
seconds. Thus, in this case, if the downloading speed is
less than 129 MB/s, the end-to-end latency of sdiff is less
than transmitting the whole APK. In practice, most users’
network download speeds cannot reach it.

The overall cost of processing power has two aspects: the
service provider and the client. For the service processing
power, the cost of the server performing a differencing is
low. This is because the server only needs to generate the
delta file once for an old version, and all users who hold
that old version can update it to the latest version. However,
The CDN cost can be significantly reduced by distributing
delta files. The client-side processing power consists of
network transmitting power and reconstruction power. For
users, the cost of charging phones energy is negligible. They
care more about mobile phone battery life. Thus, we are
concerned about the battery consumption of phones. We
utilize the Android batterystats tool to measure the
energy used during the Weibo app’s update from version
12.10.2 to 12.11.0. The reconstruction battery cost of the
spatch is 0.0416mAh. The battery capability of our phone
is 4000mAh, thus the reconstruction battery consumption of
sdiff is approximately 0.001%. We then calculate the network
transmitting power. The average energy efficiency of our
phone’s 5G transmission is about 0.8 uJ/bit [42], while
WiFi’s efficiency is typically 0.29 uJ/bit [43]. Thus, we calcu-
late the total cost of client-side processing power, as shown
in Table 5. We can observe that: (i) Compared to without dif-
ferencing, using sdiff can save battery consumption at 67.4%
and 68.2% with 5G and WiFi, respectively. (ii) During the
application update process, the main energy consumption is
network transmission, while the sdiff reconstruction process
only accounts for less than 0.1% of the energy consumption
in the entire update process.

There is a trade-off between the user’s QoE (Quality of
Experience) and the server’s CDN cost. The provider hopes
that after performing the differencing, the user’s QoE will
not be reduced, but the CDN cost can be saved significantly.
To better tradeoff that, we extend our sdiff with a tunable
hyperparameter α. We call it a flexible sdiff. The α ∈ [0, 1]
is an additional input parameter in the differencing stage to
selectively decompress files before differencing. We evaluate
the flexible sdiff with 200 app updates using the same
methodology. Specifically, We set different α parameters,
respectively 0, 0.25, 0.5, 0.75, and 1. The results are shown

1 2 3 4 5 6
Recons. time (Sec)

0.30
0.32
0.34
0.36
0.38
0.40
0.42

C
om

pr
es

si
on

 ra
tio

sdiff
HDiffPatch
archive-patcher
bsdiff
xdelta

Better

(𝛼=0)

(𝛼=0.25)

(𝛼=0.5)

(𝛼=0.75)

(𝛼=1)

(a)

20 40 60 80 100 120 140
Recons. memory (MB)

0.30
0.32
0.34
0.36
0.38
0.40
0.42

C
om

pr
es

si
on

 ra
tio

sdiff
HDiffPatch
archive-patcher
bsdiff
xdeltaBetter

(𝛼=0.75)

(𝛼=0.5)

(𝛼=0.25)

(𝛼=0)

(𝛼=1)

(b)

Fig. 11: Comparison of flexible sdiff with four other algo-
rithms for 200 app updates. (a) compression ratio w.r.t. re-
construction time. (b) compression ratio w.r.t. reconstruction
memory.

in Figure 11. We can observe that: (i) as α increases, the
reconstruction time and reconstruction memory of sdiff also
increase. (ii) When α = 0, the sdiff algorithm can achieve
the same reconstruction performance as the HDiffPatch
algorithm, i.e., the sdiff algorithm achieves the same recon-
struction time and memory reconstruction as HDiffPatch,
making it more suitable for low-end mobile devices. (iii)
When α = 1, the sdiff algorithm can achieve the lowest
compression ratio, thereby producing the smallest delta size,
which is more suitable for powerful mobile devices.

8 DISCUSSION

In this section, we summarize the important observations
and implications as well as discussing possible future direc-
tions.

Observation 1: Our results show that both bsdiff and
archive-patcher fail in generating delta files for large APKs.
In addition, archive-patcher fails for some cases during
reconstruction at the mobile side.

Implication 1: While some failures can be addressed by
either relaxing the threshold or modifying the temporal
directory, it requires a more systematic approach to ad-
dressing failures caused by excessive memory consumption
during delta generation. We believe that a sliding window
mechanism (like the one used in xdelta3) is necessary to
limit the maximum memory usage during delta generation.

Observation 2: A non-negligible portion of APK files
is compressed. The archive-patcher algorithm utilizes the
technique of decompressing-before-differencing, yielding a
smaller compression ratio since it preserves a higher similar-
ity. Our results also show that an average of 24% of bytes in
the APK cannot be decompressed with the current zlib [23]
tool used in archive-patcher. Otherwise, they cannot be re-
compressed in the same manner at the mobile side.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 13

Implication 2: This result indicates that the potential of
decompressing-before-differencing is not fully exploited.
For example, it is possible to further improve the perfor-
mance by using more sophisticated algorithms such as 7zip.

Observation 3: HDiffPatch performs consistently better
than bsdiff, especially for large files.

Implication 3: It is possible to combine HDiffPatch
with other techniques such as sliding window and
decompressing-before-differencing to devise a better algo-
rithm. For illustrative purposes, we have proposed sdiff
in Section 7. Our algorithm exhibited a notable 7.8% per-
formance enhancement compared with the state-of-the-art
algorithm.

We have also made other observations that could lead to
multiple future directions that are worthy of pursuing. First,
we observe that decompressing-before-differencing exhibits
negative benefits for some files in the APK. Considering
that decompressing will cause additional overhead at both
the server side and the mobile side, it is worth studying a
model to quantify the benefits and decompressing a selected
set of files for performance improvement. Second, we find
that the current copy instruction merging algorithm used
in HDiffPatch is still not optimal. It is thus valuable to
study the optimality problem and to design a better algo-
rithm in the future. Third, we find that current compression
tools have not added compression parameters to their com-
pressed files because they are only concerned about com-
pression and decompression instead of differencing. The
tools are forced to guess at the compression parameters of
archives to find a reversible recompression. Interestingly, we
find that only minor modifications can make differencing
algorithms avoid guessing parameters. For example, the
APK includes an extra field starting from the 30th byte
plus ’n’ bytes, where ’n’ denotes the file name’s length,
in each local file header. This field presents an opportunity
for adding compression information. By adjusting existing
compression tools to inscribe compression parameters (e.g.,
compression level) into this field, App Markets could imple-
ment a reversible transformation process more easily. This
approach will slightly increase APK size due to encoding
compression parameters into APK. It can help differencing
algorithms utilizing the decompressing-before-differencing
technique to potentially reduce delta file size because all
files’ compression parameters are known.

9 CONCLUSION

This paper conducts a systematic study to understand the
performance of four widely used differencing algorithms for
mobile application updates. We evaluate these algorithms,
i.e., xdelta3, bsdiff, archive-patcher, and HDiffPatch with
respect to five key metrics including compression ratio,
differencing/reconstruction time and memory overhead for
200 application updates. Our findings provide important
insights for developers to further optimize for performance
improvement. Guided by these insights, we have also pro-
vided a new algorithm sdiff, with the smallest compression
ratio compared with existing algorithms.

REFERENCES

[1] Statista, “Number of mobile app downloads worldwide
from 2018 to 2023,” https://www.statista.com/statistics/241587/
number-of-free-mobile-app-downloads-worldwide/, 2023.

[2] X. Teng, D. Guo, Y. Guo, X. Zhao, and Z. Liu, “SISE: Self-Updating
of Indoor Semantic Floorplans for General Entities,” IEEE Transac-
tions on Mobile Computing, vol. 17, no. 11, pp. 2646–2659, 2018.

[3] X. Zheng, Z. Cai, J. Li, and H. Gao, “A Study on Application-
Aware Scheduling in Wireless Networks,” IEEE Transactions on
Mobile Computing, vol. 16, no. 7, pp. 1787–1801, 2016.

[4] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stockmeyer,
“Compactly encoding unstructured inputs with differential com-
pression,” J. ACM, vol. 49, no. 3, p. 318–367, May 2002.

[5] M. J. May, “Donag: Generating efficient patches and diffs for
compressed archives,” ACM Transactions on Storage, vol. 18, no. 3,
pp. 1–41, 2022.

[6] R. Burns, L. Stockmeyer, and D. D. Long, “In-place reconstruction
of version differences,” IEEE Transactions on Knowledge and Data
Engineering, vol. 15, no. 4, pp. 973–984, 2003.

[7] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing
algorithm for object-oriented programs,” in Proc. of IEEE/ACM
ASE, 2004.

[8] A. Langiu, C. A. Boano, M. Schuß, and K. Römer, “Upkit: An
open-source, portable, and lightweight update framework for
constrained iot devices,” in Proc. of IEEE ICDCS, 2019.

[9] N. Samteladze and K. Christensen, “Delta++: Reducing the size
of android application updates,” IEEE Internet Computing, vol. 18,
no. 2, pp. 50–57, 2013.

[10] W. Dong, Y. Liu, C. Chen, J. Bu, C. Huang, and Z. Zhao, “R2:
incremental reprogramming using relocatable code in networked
embedded systems,” IEEE Trans. Computers, vol. 62, no. 9, pp.
1837–1849, 2013.

[11] W. Dong, C. Chen, J. Bu, and W. Liu, “Optimizing relocatable code
for efficient software update in networked embedded systems,”
ACM Transactions on Sensor Networks, vol. 11, no. 2, pp. 1–34, 2014.

[12] B. Mo, W. Dong, C. Chen, J. Bu, and Q. Wang, “An efficient
differencing algorithm based on suffix array for reprogramming
wireless sensor networks,” in Proc. of IEEE ICC, 2012.

[13] B. Li, C. Tong, Y. Gao, and W. Dong, “S2: a small delta and small
memory differencing algorithm for reprogramming resource-
constrained iot devices,” in Proc. of IEEE INFOCOM (WKSHPS),
2021.

[14] K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and
A. Fragkiadakis, “Firmware over-the-air programming techniques
for iot networks-a survey,” ACM Computing Surveys, vol. 54, no. 9,
pp. 1–36, 2021.

[15] J. Macdonald, “xdelta3.” http://xdelta.org/, 2023.
[16] C. Percival, “Binary diff/patch utility.” http://www.

daemonology.net/bsdiff/, 2023.
[17] sisong, “HDiffPatch.” https://github.com/sisong/HDiffPatch,

2023.
[18] Google, “archive-patcher.” https://github.com/google/

archive-patcher, 2023.
[19] ——, “Google Play,” https://play.google.com/store/games, 2023.
[20] OPPO, “OPPO APP Market,” https://developers.oppomobile.

com/newservice/capability?pagename=app store, 2023.
[21] Xiaomi, “Xiaomi app store,” https://app.mi.com/, 2023.
[22] N. Li, “Tencent myapp (Yingyong Bao): Android app stores and

the appification of everything,” in Appified: Culture in the age of
apps. University of Michigan Press, 2018, pp. 42–50.

[23] R. Greg, G. Jeanloup, and M. Adler, “zlib Technical details,” https:
//www.zlib.net/zlib tech.html, 2022.

[24] A. Tridgell, P. Mackerras et al., “The rsync algorithm,” 1996.
[25] I. Pavlov, “Lempel–Ziv–Markov chain algorithm.” https://7-zip.

org/sdk.html, 2023.
[26] J. Seward, “bzip2 and libbzip2,” avaliable at http://www. bzip. org,

1996.
[27] Tencent, “Tinker,” https://github.com/Tencent/tinker, 2023.
[28] A. Sharma and R. Nasre, “QADroid: Regression Event Selection

for Android Applications,” in Proc. of ACM ISSTA, 2019.
[29] Z. Hu, X. Zou, W. Xia, S. Jin, D. Tao, Y. Liu, W. Zhang, and

Z. Zhang, “Delta-dnn: Efficiently compressing deep neural net-
works via exploiting floats similarity,” in Proc. of ACM ICPP, 2020.

[30] S. Zhang, D. Wu, H. Jin, X. Zou, W. Xia, and X. Huang, “QD-
Compressor: A Quantization-based Delta Compression Frame-
work for Deep Neural Networks,” in Proc. of IEEE ICCD, 2021.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX 14

[31] X. Zhou, C. R. Qi, Y. Zhou, and D. Anguelov, “Riddle: Lidar data
compression with range image deep delta encoding,” in Proc. of
IEEE/CVF CVPR, 2022.

[32] C. Deng, Q. Chen, X. Zou, E. Xu, B. Tang, and W. Xia, “imDedup:
A Lossless Deduplication Scheme to Eliminate Fine-grained Re-
dundancy among Images,” in Proc. of IEEE ICDE, 2022.

[33] Y. Collet and M. Kucherawy, “Zstandard compression and the
application/zstd media type,” Tech. Rep., 2018.

[34] D. Korn, J. MacDonald, J. Mogul, and K. Vo, “The vcdiff generic
differencing and compression data format,” Tech. Rep., 2002.

[35] N. J. Larsson and K. Sadakane, “Faster suffix sorting,” Theoretical
Computer Science (TCS), vol. 387, no. 3, pp. 258–272, 2007.

[36] S. Golomb, “Run-length encodings (corresp.),” IEEE Transactions
on Information Theory (TIT), vol. 12, no. 3, pp. 399–401, 1966.

[37] J. Fischer and F. Kurpicz, “Dismantling divsufsort,” arXiv preprint
arXiv:1710.01896, 2017.

[38] P. Deutsch, “Rfc1951: Deflate compressed data format specification
version 1.3,” 1996.

[39] A. Datta, K. F. Ng, D. Balakrishnan, M. Ding, S. W. Chee, Y. Ban,
J. Shi, and N. D. Loh, “A data reduction and compression de-
scription for high throughput time-resolved electron microscopy,”
Nature Communications, vol. 12, no. 1, p. 664, 2021.

[40] T. Lu, W. Xia, X. Zou, and Q. Xia, “Adaptively compressing iot
data on the resource-constrained edge.” in HotEdge, 2020.

[41] Oracle, “java.io.File Java Docs.” https://docs.oracle.com/javase/
7/docs/api/java/io/File.html, 2023.

[42] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu,
and H. Ma, “Understanding Operational 5G: A First Measurement
Study on its Coverage, Performance and Energy Consumption,” in
Proc. of ACM SIGCOMM, 2020.

[43] O. B. Yetim and M. Martonosi, “Adaptive delay-tolerant schedul-
ing for efficient cellular and wifi usage,” in Proc. of IEEE WoW-
MoM, 2014.

