
A Declarative Approach to Secure IoT
Applications Using TrustZone
Tong Sun1, Borui Li2, Yixiao Teng1, Yi Gao1, and Wei Dong1

1The State Key Laboratory of Blockchain and Data Security

College of Computer Science, Zhejiang University, China

2School of Computer Science and Engineering, Southeast University, China

dTEE

IPSN 2024

EmNets@ZJUIPSN’24 dTEE

Background

2

• Internet of Things (IoT) devices are widely deployed in
safety-critical scenarios

Structure
Monitoring

Health
Monitoring

Payment Surveillance

If the device's rich execution environment (e.g.,
operating system) has been compromised
• Sensitive operations will be manuplicated
• Sensitive data will be modified or leaked

EmNets@ZJUIPSN’24 dTEE

Background

3

• Vendors leverage the hardware-assisted Trusted Execution
Environments (TEEs) to enhance the ability of devices against
attacks

ARM TrustZone Intel SGX AMD SEV

IoT PC

EmNets@ZJUIPSN’24 dTEE

Background

4

What is TEE?

• CPU/Memory/Peripherals are isolated into
two worlds

• Secure World (TEE)
• Non-secure World (REE)

• REE OS (Linux, Zephyr, Contiki, …)

• TEE OS (OP-TEE, Trusty, …)

How to use it?

• Separates an app into two parts
• A trusted application (TA)
• A client application (CA)

EmNets@ZJUIPSN’24 dTEE

Develop TEE-based Apps

6

• Developers need an in-depth knowledge of TEE APIs to carefully design the
control-flow between TA and CA

• Developers should also take care of the data-flow to prevent the disclosure
of security-sensitive variables

Unfortunately, securing an existing non-secure IoT
app with TEE is not easy.

EmNets@ZJUIPSN’24 dTEE

Previous work

7

• Automatic Code Partitioning
• [ICSE’16] Automated Partitioning

• [ATC’17] Glamdring

• Automatic Code Transformation
• [ICDE’21] Twine

• [ICDCS’22] WATZ

[ICSE’16] Automated Partitioning of Android Applications for Trusted Execution Environments.

[ATC’17] Glamdring: Automatic Application Partitioning for Intel SGX.

[ICDE’21] Twine: An Embedded Trusted Runtime for WebAssembly.

[ICDCS’22] WATZ: A Trusted WebAssembly Runtime Environment with Remote Attestation for TrustZone

EmNets@ZJUIPSN’24 dTEE

Previous work

8

• Automatic code partitioning [ICSE’16, ATC’17]
• They encapsulate sensitive data into TA and generate glue code between TA and CA

• They are suitable for simple apps but fail in the following two scenarios

2. Secure peripheral interactions

The most noticeable distinction between

IoT and desktop apps is the interaction of

sensing and actuating peripherals

1. Complicated trusted logic

Developers may not be satisfied with

only protecting the data but also try to

add customized logic

[ICSE’16] Automated Partitioning of Android Applications for Trusted Execution Environments.

[ATC’17] Glamdring: Automatic Application Partitioning for Intel SGX.

EmNets@ZJUIPSN’24 dTEE

Previous work

9

• Automatic Code Transformation [ICDE’21, ICDCS’22]
• They port the WebAssembly (WASM) runtime in the TEE and compile the whole

program into WASM bytecode

• Two main limitations

1. Secure peripheral interactions

They cannot support peripherals because

the WASM runtime lacks of I/O modules

2. Large memory usage

• Protect whole program

• WASM runtime occupies ~50% secure

memory

[ICDE’21] Twine: An Embedded Trusted Runtime for WebAssembly.

[ICDCS’22] WATZ: A Trusted WebAssembly Runtime Environment with Remote Attestation for TrustZone.

EmNets@ZJUIPSN’24 dTEE

Contributions

10

• dTEE is a novel system to accelerate the development of trusted
IoT applications using a declarative approach

• D-Lang language to support expressive application development.

• We propose a graph optimization algorithm to maximize the
efficiency of the TEE-based applications

• We implement dTEE and extensively evaluate its expressiveness,
efficiency, and overhead

EmNets@ZJUIPSN’24 dTEE

Design Goals

11

• Ease of programming
• We propose a declarative language D-lang on top of the well-known SQL language

• Application independent
• D-lang is to be developed such that existing apps need no source code modifications

• Efficiency
• Reduce the associated overhead resulting from the enhancement of app security

• Soundness
• e.g., meticulous sanitization of the transformation interfaces

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

12

• Four stages

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

13

• Four stages

1. Code
Declaration

2. Code
Analysis

3. Code
Partitioning

4. Code Generation
& Compilation

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

14

• 1. Code declaration

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

15

• 1. Code declaration
Source code

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

16

• 1. Code declaration

Case 1: Users require that the integrity of GPS data must be protected

Source code

D-Lang code

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

17

• 1. Code declaration

Case 2: Users want to sign the GPS data in the TEE

Source code

D-Lang code

Insert code

EmNets@ZJUIPSN’24 dTEE

D-Lang

18

• General
• Configure the TEE environment

• Declarative Development of Trusted Logic
• Provide built-in functions

• Tiered Protection
• Provide tiered degrees for temporary data protection

• Provide permanent data protection

• Provide functions protection

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

19

• 2. Code analysis

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

20

• 3. Code Partitioning

EmNets@ZJUIPSN’24 dTEE

issue#1

21

• REE and TEE world switching has huge overhead

~150ms！ 42ms！

EmNets@ZJUIPSN’24 dTEE

dCFG-based Code partitioning

22

• dCFG Construction

Drone app
source code

D-Lang code

dCFG

EmNets@ZJUIPSN’24 dTEE

dCFG-based Code partitioning

23

• Partitioning algorithm
• Input: a directed acyclic graph 𝐺 (𝑉 , 𝐸)

• Objective

• minimize computation and switching time

• Constraints

• 1. TA memory should be less than TEE secure memory

• 2. All sensitive operations and data need to be protected in TEE

EmNets@ZJUIPSN’24 dTEE

dTEE Workflow

24

• 4. Code Generation & Compilation

EmNets@ZJUIPSN’24 dTEE

issue#2

25

• Libraries and drivers are different in the REE and TEE

• We first analyze IoT libraries
• Portable libraries

• Auto-transformable libraries

• Manually-transformable libraries

EmNets@ZJUIPSN’24 dTEE

Peripheral-oriented Library Porting Mechanism

26

• Non-MMU devices (easy)
• directly configure physical addresses

• MMU-equipped devices (hard)
• map physical and virtual addresses (e.g., via mmap interface)

• TA lacks permissions for physical address mapping

• dTEE extends the basic mapping mechanism for TEE OS
• Utilizes the phys_to_virt() function

• Provides pre-configured kernel-level functions for GPIO access

EmNets@ZJUIPSN’24 dTEE

27

• Analysis framework
• Frama-C

• Source-to-source transformation
• Auxiliary code is generated by JAVA

• Peripheral driver porting is based on pseudo-TAs

Implementation

EmNets@ZJUIPSN’24 dTEE

Evaluation

28

• Three questions
• (i) Does dTEE achieve better expressiveness and rapid development than

existing approaches?

• (ii) What is the dCFG-based optimization improvement performance?

• (iii) What is the overhead of dTEE?

Raspberry Pi 3B+
Raspbian OS

(REE OS)
OP-TEE OS
(TEE OS)

EmNets@ZJUIPSN’24 dTEE

Evaluation

29

• Expressiveness
• Support four real-world apps and six microbenchmarks

Category Benchmark Konstantin et al. [1] Glamdering [2] WATZ [3] dTEE

Basic programming

Print

cJSON

concat

Sensing

Blink

Temperature

Humidity

Real-world APPs

[ICDCS’18] Alidrone

[SRDS’20] MQT-TZ

[SRDS’20] TZ4Fabric

[MobiSys’20] DarkNeTZ

Why dTEE is better?

• dTEE’s peripheral-oriented library porting mechanism

EmNets@ZJUIPSN’24 dTEE

Evaluation

30

• Reduced Lines of Code (LOC)
• Reduce more than 90% LoC in four real-world apps

Reduced LOC % of Reduced LOC• dTEE’s D-Lang language provides abstractions for protecting
sensitive operations and data

EmNets@ZJUIPSN’24 dTEE

Evaluation

31

• Performance improvement (speedtest1 benchmark)
• Reduce ~50% execution time

• Reduce ~75% secure memory usage

• dTEE’s dCFG optimization works well (~14%)

• dTEE utilizes a partitioning-based method which reduces memory
usage

EmNets@ZJUIPSN’24 dTEE

Evaluation

32

• dTEE overhead
• Compared to using OP-TEE directly, dTEE incurs less than 6% overhead in terms of

execution time

• dTEE results in a negligible overhead

Thank you for your attention!

Tong Sun, Borui Li, Yixiao Teng, Yi Gao, and Wei Dong

If you have any questions, please contact tongsun@zju.edu.cn

dTEE
A declarative approach to secure IoT
applications using TEE

• D-Lang language

• dCFG optimization

• Peripheral-oriented lib porting

EmNets@ZJUIPSN’24 dTEE

Declarative development language

34

• D-Lang

EmNets@ZJUIPSN’24 dTEE

35

	幻灯片 1: A Declarative Approach to Secure IoT Applications Using TrustZone
	幻灯片 2: Background
	幻灯片 3: Background
	幻灯片 4: Background
	幻灯片 6: Develop TEE-based Apps
	幻灯片 7: Previous work
	幻灯片 8: Previous work
	幻灯片 9: Previous work
	幻灯片 10: Contributions
	幻灯片 11: Design Goals
	幻灯片 12: dTEE Workflow
	幻灯片 13: dTEE Workflow
	幻灯片 14: dTEE Workflow
	幻灯片 15: dTEE Workflow
	幻灯片 16: dTEE Workflow
	幻灯片 17: dTEE Workflow
	幻灯片 18: D-Lang
	幻灯片 19: dTEE Workflow
	幻灯片 20: dTEE Workflow
	幻灯片 21: issue#1
	幻灯片 22: dCFG-based Code partitioning
	幻灯片 23: dCFG-based Code partitioning
	幻灯片 24: dTEE Workflow
	幻灯片 25: issue#2
	幻灯片 26: Peripheral-oriented Library Porting Mechanism
	幻灯片 27: Implementation
	幻灯片 28: Evaluation
	幻灯片 29: Evaluation
	幻灯片 30: Evaluation
	幻灯片 31: Evaluation
	幻灯片 32: Evaluation
	幻灯片 33
	幻灯片 34: Declarative development language
	幻灯片 35

