
dTEE: A Declarative Approach to Secure IoT Applications Using
TrustZone

Tong Sun1, Borui Li2, Yixiao Teng1, Yi Gao1, and Wei Dong1
1The State Key Laboratory of Blockchain and Data Security

College of Computer Science, Zhejiang University
2School of Computer Science and Engineering, Southeast University
{tongsun,tengyixiao,gaoyi,dongw}@zju.edu.cn,libr@seu.edu.cn

ABSTRACT

Internet of Things (IoT) applications have recently been widely
used in safety-critical scenarios. To prevent sensitive information
leaks, IoT device vendors provide hardware-assisted protections,
called Trusted Execution Environments (TEEs), like ARM Trust-
Zone. Programming a TEE-based application requires separate code
for two components, significantly slowing down the development
process. Existing solutions tackle this issue by automatic code parti-
tion while not successfully applying it in two complicated scenarios:
adding trusted logic and interactions with secure peripherals.

We propose dTEE, a declarative approach to secure IoT applica-
tions based on TrustZone. dTEE proposes a rapid approach that en-
ables developers to declare tiered-sensitive variables and functions
of existing applications. Besides, dTEE automatically transforms
device drivers into trusted ones. We evaluate dTEE on four real-
world IoT applications and seven micro-benchmarks. Results show
that dTEE achieves high expressiveness for supporting 50% more
applications than existing approaches and reduces 90% of the lines
of code against handcrafted development.

KEYWORDS

Internet of Things, ARM TrustZone, declarative language

1 INTRODUCTION

Nowadays, Internet of Things (IoT) applications are widely adopted
for people to interact with physical environments. Such usages,
especially under safety-critical scenarios (e.g., structure monitor-
ing [52] and healthcare [10, 13, 36, 47]), also raise serious security
and privacy concerns [5, 6]. This safety problem is worsened by the
vulnerable wireless connection and limited computation resources
of IoT devices.

As a countermeasure, IoT device vendors leverage hardware-
assisted Trusted Execution Environments (TEEs) such as ARM
TrustZone [8] and Intel SGX [23] to enhance the ability of IoT
devices against attacks. TEE separates an application into two parts:
a trusted application (TA) and a client application (CA). Security-
sensitive functions and variables reside in TA, and the application
logic in CA can interact with TA only using TEE APIs.

Unfortunately, hardening an existing non-secure IoT application
with TEE is not easy. First, the separated architecture of TEE-based
applications forces developers to carefully design the control-flow
between TA and CA, which needs an in-depth knowledge of TEE
APIs. Second, developers should also take care of the data-flow to
prevent the disclosure of security-sensitive variables.

To help developers port existing applications to secure ones,
researchers introduce automatic approaches [29, 42] to encapsulate

sensitive data into TA and generate glue codes between TA and CA.
Such approaches are suitable for generating simple trusted applica-
tions, but fail when facing the following two complicated scenarios:
(1) Complicated trusted logic. As the complexity of trusted IoT appli-
cations grows, developers may not be satisfied with only protecting
the data but also try to add customized logic such as encryption.
(2) Secure peripheral interactions. The most noticeable distinction
between IoT and desktop applications is the interaction of sensing
and actuating peripherals. However, how to automatically convert
the software libraries containing peripheral interactions with TEE
is left unsolved.

In order to address the above challenges, we present dTEE, a
declarative approach to secure IoT applications using TrustZone.
Compared with existing approaches, dTEE has three distinct ad-
vantages. First, dTEE provides a novel declarative programming
model, D-lang, to facilitate the expression of complicated trusted
logic and simplify the development by our well-designed primitives.
Second, dTEE proposes a peripheral-oriented library porting mech-
anism to automatically port the IoT applications with peripheral
access. Third, to minimize the switching overhead between CA and
TA, dTEE further generates the trusted applications using dCFG
(declarative Control-Flow Graph)-based code partitioning.

To use dTEE, developers first specify their trusted application
logic and the target hardware platform in a declarative manner
using D-lang. Afterward, the dTEE system takes the D-lang and
the non-secure application source code as input, automatically par-
titions the original code into the CA and TA side, and optimizes the
control-flow to improve the performance of the generated applica-
tion. Finally, dTEE outputs the compiled CA and TA according to
the specified platform, and developers can deploy the application
without any modification.

We implement the dTEE system on top of a widely-used TEE
in IoT applications, ARM TrustZone, and evaluate its performance
with four representative TEE-based applications [30, 33, 34, 43]
and seven micro-benchmarks. Results show that: (1) D-lang can
reduce 90.03% of the lines of code against handcrafted development.
(2) Compared with existing approaches, dTEE supports automatic
security enforcement for 50% more applications in our tested bench-
marks. (3) Our dCFG-based code generation technology could im-
prove at most 1.48x run-time overhead of the generated application
compared to the non-optimization. (4) dTEE incurs less than 6.6%
overhead in terms of execution time for IoT applications compared
to the manual approach, which is acceptable.

We summarize the contributions as follows:

Tong Sun1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

TEE-based IoT Platform
CPU Core

Client
Application

TEE Client API

REE OS

Trusted
Application

TEE Internal API

REE
Shared
Memory

TEE
Core

TEE
Libs

TEE OS

TEE

Secure Monitor Mode
SMC SMC

Peripherals
Normal Devices Trusted Devices

Figure 1: Programming model of TEE-based applications.

• We present dTEE, a novel system to accelerate the development
of trusted IoT applications using a declarative approach. In ad-
dition, we propose the D-lang language to support expressive
application development.

• To maximize the efficiency of the TEE-based applications, we
formulate the code generation problem as a graph optimization
problem and leverage an efficient solver to solve it.

• We implement dTEE and extensively evaluate its expressive-
ness, efficiency, and overhead. Results show that dTEE can sig-
nificantly reduce the additional efforts to develop a secure IoT
application.

2 BACKGROUND

2.1 Programming Model of TEE-based Apps

For developers, building a TEE-based application is not effortless.
Typically, developers produce a CA and a TA for one security de-
mand from scratch in two execution environments. Figure 1 shows
the programming model of TEE-based applications. On the rich
execution environment (REE or non-secure world) side, a CA is a
normal application that could use the TEE Client APIs to commu-
nicate with the TA. The only way for CA to switch REE to the TEE
is to change the CPU mode to secure monitor mode by invoking
the SMC (Secure Monitor Call). On the TEE (or secure world) side,
a TA is executing in the user space of TEE with the TEE Internal
APIs to interact with the TEE OS, which is built with TEE OS core
and functional libraries. In various TEE OSes (e.g., OP-TEE [28],
QSEE [39], Trusty [7], etc.), TEE Client APIs and TEE Internal APIs
are uniformed by the GlobalPlatform [18].

Transitioning existing applications to TEE-based security neces-
sitates a sophisticated workflow. Initially, developers must identify
the sources and sinks of sensitive data. Subsequently, they should
diligently map corresponding secure-sensitive statements to avoid
leaking information. Communication between the CA and TA re-
quires meticulous utilization of both TEE Client and Internal APIs,
encompassing tasks like shared memory allocation and parameter
transmission checks. Given that only a subset of POSIX interfaces
are supported by the TEE OS, some features may need removal or
modification. Only after these steps can the applications be com-
piled to meet security specifications.

2.2 Secure Peripheral Accessing of TEE Apps

Unfortunately, IoT developers need more struggle to port their ex-
isting applications to secure ones. In contrast to typical desktop ap-
plications which seldom interact with peripherals, IoT applications
frequently do. Under secure conditions, TEE-based IoT platforms
allow developers to designate certain peripherals as trusted, render-
ing them inaccessible to the CA. Transitioning a peripheral-centric
application to TEE is intricate, given the TEE user space (where the
TA operates) lacks permission to access these trusted peripherals.
Addressing this requires developers to specify unique physical reg-
ister addresses in the TEE kernel, aligning with platform-specific
datasheets. Additionally, the peripheral can be set via TZASC [9] to
be exclusively accessible by the TA, restricting access from the CA.

For example, to control an LED on a Raspberry Pi through TEE,
developers must consult the datasheet for the GPIO address, then
use TEE OS APIs like GPFSEL and GPCLR for basic operations. This
requires a pseudo-TA approach [28], increasing development com-
plexity. Furthermore, TEE’s base operations, such as read and
write, differ from REE, necessitating API adjustments. Hence, there
is currently a lack of approaches to assist developers in swiftly tran-
sitioning IoT applications to TEE security.

3 RELATEDWORK

Automatic code partitioning for TEE-based applications.Glam-
dring [29] is a source code partitioning framework built for C ap-
plications of Intel SGX. It allows developers to specify the data
needed to be protected by code annotation. This framework uses
automatic static program analysis to find the program dependencies
of annotated data, which the pre-built partition specification would
filter. Consequently, a source-to-source transformation compiler
separates one C application into two parts (i.e., untrusted code in
the REE and trusted code in the TEE). Another related work is the
automatic partitioning of Android applications for TrustZone [42].
Similar to the [29], it uses taint analysis to find related candidate
statements of annotated sensitive data. The native Java App is auto-
matically separated into two components: 1) privileged code with
TEE-specific commands wrapper using JNI, transformed to a TA
manually later, and 2) normal code compiled to a CA.

While much of the research into automatic code partitioning has
focused on TEE-based desktop applications, an equally important
yet underexplored problem is how to rapidly develop complicated
trusted IoT applications. The previous works cannot satisfy the
vigorous applications of IoT since they have a wide variety of pe-
ripheral interactions.

Automatic code transformation for TEE-based applica-

tions. Twine [31] and WaTZ [32] are adaptations that integrate
the WebAssembly micro runtime (WAMR) into TEEs; the former is
predicated on the Intel SGX platformwhile the latter leverages ARM
TrustZone. Their methodologies share similarities: a normal appli-
cation is pre-compiled into WebAssembly (Wasm) bytecode using
ahead-of-time (AOT) compilation, which is subsequently executed
within the TEE through the runtime, encompassing the entirety
of the application’s bytecode. Occlum [44] is a library operating
system (LibOS) for Intel SGX while supporting both security and ef-
ficiency. Using Occlum, the original App can automatically execute
in the SGX without partitioning into two versions manually.

dTEE: A Declarative Approach to Secure IoT Applications Using TrustZone

APP
Source
Code

a.c

D-LANG
Files

Static Program
Analysis

Static Data-Flow
Analysis

Static Control-
Flow Analysis

Partitioning

PDG dCFG-based
Code Partition

(Sec. V-B)

dCFG

Candidate statements

CA

TA

TEE &
Platform
Profiles

Specify the TEE
and IoT platform

① Code Declaration ② Code Analysis ③ Code Partitioning ④ Code Generation & Compilation

a.dl

User Input
(Sec. V-A)

Library Porting
(Sec. V-C)

Source-to-Source
Transformation

(Sec. VI)

(§5.1)

(§5.2)

(§5.3)

(§6)

a.c

a.dtee

Figure 2: Illustration of dTEE workflow.

These efforts neglect the constrained nature of TEE secure mem-
ory, especially in TrustZone (typically under 20MB). Directly em-
bedding a whole application into the TEE might surpass memory
bounds. Thus, dTEE utilizes an auto-partitioning mechanism, in-
ducting code segments into the TEE judiciously to prevent informa-
tion breaches. Furthermore, these previous works are not feasible
for IoT applications, whereas dTEE is adept at accommodating
intricate IoT applications.

TrustZone-based applications. Nowadays, much research fo-
cuses on enhancing the security of IoT applications. In this paper,
we use the following four existing works to illustrate how users
develop trusted IoT applications with dTEE.

DarkneTZ [33] utilizes TrustZone to shield critical DNN layers
against privacy breaches like Membership Inference Attacks (MIA).
It introduces a TEE-oriented neural network framework that ports
selective components of Darknet [40] for secure world execution.
Notably, to thwart MIA, it delegates deep layers (e.g., the last five)
to TEE while the rest layers are operated in the REE.

MQT-TZ [43] is a lightweight TrustZone-based middleware em-
ploying the MQTT protocol. Contrasting traditional MQTT ser-
vices (e.g., mosquitto[15]), it endeavors to secure the MQTT broker.
Unique symmetric keys of subscribers are securely stored, with
re-encryption preceding broker-handled encrypted messages. To
minimize overhead in accessing keys through the secure storage
mechanism, MQT-TZ introduces an LRU Cache within the TEE.

Alidrone [30] ensures drones can validate their compliance with
No-Fly-Zones. Capitalizing on restricted privileges, drone operators
cannot adulterate geographic data. The TEE kernel houses the GPS
sensor driver, granting access to the TEE user space. To confirm
unique drone-sourced data, secure driver-acquired tuples (latitude,
longitude, timestamp) are signed using private keys (e.g., RSA).
Ensuring confidentiality, tuples are encrypted using a symmetric
key (e.g., 128-bit AES) within the TEE.

TZ4Fabric [34] enables Hyperledger Fabric (HF) smart contracts
to run in TEEs, shifting from REE. HF, a permissioned open-source
blockchain, refers to smart contracts as chaincode. TZ4Fabric safe-
guards the chaincode segment of HF in the TEE, leaving the proxy
component non-secure.

4 DTEE USAGE

In this section, we first introduce the design ethos and workflow of
dTEE. Then, we propose real-world usage cases of D-lang.

4.1 Goals

To transform existing IoT applications into TEE-based secure appli-
cations, we present the following four objectives for dTEE.

Ease of programming. Our first goal is to allow developers to
program trusted applications easily. Hence, we propose a declara-
tive language D-lang on top of the well-known SQL language for
developers to specify their trusted requirements in their familiar
way. We further enhance the declarative language with the support
of native C code and security-related APIs for developers to express
complex trusted logic. Declarative languages are well known for
their ability to express complicated operations with short programs.
We will describe D-lang in §5.1.

Application independent. Our second goal is to achieve appli-
cation independence. We aim for D-lang programs to be developed
such that existing applications need no source code modifications.
Thus, developers can declare sensitive data and functions for se-
curity requirements through simple statements, eliminating the
need for manual dependency identification and transformation to
TEE-based code.

Efficiency. Our third goal revolves around augmenting the exe-
cution efficiency of applications while minimizing the associated
overhead resulting from the enhancement of application security.
A recent approach is to execute the entire application within the
TEE [32], but it is constrained by the limited secure memory. We
will show our novel partition design in §5.2.

Soundness. The last goal is to attain soundness, a formidable
endeavor given the intricate interconnections between the REE and
TEE. For example, meticulous sanitization of the transformation
interfaces is imperative to ensure seamless handling of pointers [38,
49]. The implementation details are illustrated in §6.

4.2 Threat Model

dTEE aims to relieve developers’ efforts to secure existing IoT appli-
cations without source-level modifications. dTEE secures the appli-
cations without violating the principle of the developer’s demands,
i.e., dTEE tries to follow the guidance of developers’ annotations.

In terms of software level, we consider a powerful attacker with
the ability to access all platforms supporting TEE physically. The
commodity OS of the platform in the REE is untrusted and could be
compromised by adversaries.We rely on the protectionmechanisms
offered by the TEE to shield sensitive data and code. In addition, we
assume that the TEE OSs (e.g., OP-TEE) are trusted and reliable. We

Tong Sun1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

1 /* DroneApp/main.c */
2 int main() {
3 /* ... */
4 rawDataType rawData = getRawData ();
5 GPSDataType gpsData = parseRawData(rawData);
6 /* ... */
7 }

Listing 1: The core application logic of DroneAPP [30].

1 /* Case1/drone.dtee */
2 FROM DroneAPP/main.c FUNC main {
3 TZ_DATA_INTG gpsData;
4 }

Listing 2: D-lang code snippet of Case 1.

consider that the user’s driver is invulnerable because we focus on
converting existing applications to TEE-based under the guidance
of developers.

In terms of hardware level, we assume that the SoC (System on
Chip) of developers is trusted, and other components outside of
SoC are assumed to be vulnerable, including peripherals. We rely
on the hardware protection offered by the TEE device vendors. We
do not consider side-channel attacks on the TEE, i.e., we assume
that the TEE can protect the confidentiality and integrity of the
program and data inside it.

4.3 Usage Example

Figure 2 illustrates the workflow of dTEE. To demonstrate how we
can secure existing applications via dTEE, let us first show a typical
drone application, as shown in Listing 1. Its primary functionality
involves collecting raw data and converting it to a standardized
GPS format. In this case, the application does not utilize a TEE
for security. Alidrone [30] protects the variables and functions in
lines 4 and 5 of Listing 1 to execute them within TEE, ensuring the
collection of trusted GPS data. However, we cannot assume that
all developers are experts in TEE programming like [30]. Now, we
demonstrate how dTEE enables developers to seamlessly transition
from this original version to a TEE-secured variant through a four-
stage process, effectively reproducing Alidrone’s modifications to
the Listing 1 code.

① Code declaration. dTEE must know which data or functions
that users want to protect in the TEE. Developers need to provide
the declaration file that program using our D-lang (see §5.1). This
stage is the only stage needed users to do. In many realistic scenar-
ios, users have different requirements on sensitive statements based
on the security development demands. We next show how dTEE
can satisfy users’ diverse security requirements in the following
cases.

Case 1: Users require that the integrity of GPS data must be
protected by TEE. They can declare the variables to be protected
with keyword TZ_DATA_INTG to cope with this requirement, as
shown in Listing 2. The "INTEGRITY" means dTEE should find the
code slice that influences the GPS data in a backward direction, e.g.,
the rawData and getRawData(), and protect them in the TEE.

Case 2: Further, similar to Case 1, Alidrone wants to sign the
GPS data in the TEE. This requires users to create a new variable
signed_gpsData which still resides in the normal world but adds
new secure programmable logic, i.e., signing the GPS data, in the
TEE. Users can write the declarative statements of Listing 3 to

1 /* Case2/drone.dtee */
2 FROM DroneAPP/main.c FUNC main {
3 TZ_DATA_CONF gpsData;
4 INSERT_AFTER [ANNT]
5 STRING_TZ *private_key;
6 TZ_genKey(RSA_KEYPAIR , 2048, private_key , NULL);
7 char *signed_gpsData;
8 TZ_sign_rsa_sha1(signed_gpsData , private_key , &

↩→ gpsData , ...);
9 END_INSERT
10 }

Listing 3: D-lang code snippet of Case 2.

achieve the core implementation of Alidrone. To insert new code
logic, we use INSERT_AFTER and END_INSERT to declare an inser-
tion block. Further, the developer can use the same annotation as in
D-lang where the original code needs to be inserted (e.g., [ANNT]
in line 4 of Listing 3), which dTEE can handle in the static analysis.
The insert statements will be placed after line 5 of the original code.
The private_key is declared with STRING_TZ, specifying it is a
variable in the TEE. The signed_gpsData (line 7 of Listing 3) is
declared by the char keyword of standard C, and thus this state-
ment is inserted into the REE while the remaining statements are
inserted into the TEE. The TZ_genKey() and TZ_sign_rsa_sha1()
are built-in functions provided by dTEE to facilitate developers. The
former function can generate mainstream symmetric and asymmet-
ric keys (e.g., AES and RSA) and the latter function can perform
encrypt operation. Specifically, in this case, we generate a 2048-bit
RSA private key and sign the GPS data in the TEE to protect the
data integrity.

② Code analysis. In this phase, dTEE identifies sensitive state-
ments associated with declared data and functions to meet secu-
rity requirements, safeguarding the integrity or confidentiality of
sensitive elements. Utilizing the application’s source code, dTEE
conducts static program analysis, producing a program dependency
graph (PDG) that encompasses data and control dependencies. Once
sensitive data is designated in the D-lang files, dTEE treats them
as tainted sources or sinks for protection. Integrating user input
with the PDG, both data-flow and control-flow analyses pinpoint
tainted statements destined for TEE partitioning.

③ dCFG-based code partition. The code partition is responsi-
ble for generating the optimal partition of the result in the analysis
phase. The dTEE leverages the dCFG (declarative Control-Flow
Graph)-based code partitioning mechanism to improve the effi-
ciency of the final CA and TA, detailed in §5.2.

④ Code generation and compilation. The last stage is respon-
sible for generating source code and compiling CA and TA. The
library porting mechanism is built to automatically port the exist-
ing sensitive drivers of the original application to the TEE-based
ones. We will further give a detailed description in §5.3. The source-
to-source transformation leverages the TEE Client APIs and TEE
Internal APIs to set up routine communications between CA and
TA, detailed in §6.

5 DESIGN OF DTEE

5.1 Declarative Development Language

To address the limited expressiveness problem of existing TEE-
development approaches [29, 42], we propose a declarative ap-
proach, D-lang, for developers to specify their application logic of

dTEE: A Declarative Approach to Secure IoT Applications Using TrustZone

the trusted IoT application. Table 1 shows the keywords of D-lang.
Compared to existing works, D-lang has two distinct features that
improve expressiveness.

The following two critical issues with previous research have
not yet been solved: (1) To transform the existing application to the
TEE-based one, developers may need to add customized logic of
new security demands. (2) The protection granularity of statements
is not satisfied for development. To this end, D-lang is designed for
developers adding new trusted logic to complicated applications and
provides tiered protection of variables and functions that are more
fine-grained than previous works. Formally, a D-lang program
consists of three types of statements: general statements, trusted
logic statements, and tiered protection statements. The general
statements are to locate the original file that has security demands.

Trusted logic statements. These statements are designed to
add new trusted logic, which was neglected by previous works. The
@DRIVER and the pair of INSERT are to enrich the functionality in
TEE. Existing works focus on desktop applications but neglect the
demands of peripherals. Hence, the most crucial expressiveness of
D-lang is the interaction of physical devices.We emphasize that the
most noticeable distinction between IoT and desktop applications
is the interaction of sensing and actuating peripherals, which is
why the previous cannot work.

To address this limitation, D-lang incorporates the @DRIVER
keyword, delineating the specific profile of the hardware platform.
Consequently, supported non-secure device drivers for IoT applica-
tions can seamlessly metamorphose into their secure counterparts.
Additionally, dTEE can auto-configure IoT devices via TZASC (e.g.,
TZC-400 on Hikey960 [53]), designating the peripheral as trusted
and restricting REE access.

1 @DRIVER "profile.h";

Another crucial issue that previous work still has not addressed
is the insertion of the new trust code. As the example of §4 shows,
the INSERT_AFTER (line 4 of Listing 3) and END_INSERT (line 9 of
Listing 3) are a pair of configuration statements for inserting arbi-
trary new program logic that is not in the original code. We showed
the example in Listing 3.

The variable declaration statements are built for developers that
add trusted variables in the TEE for new secure demands, while the
existing approaches are missing this vital feature. Since numerous
IoT applications are not developing based on TEE, these statements
can generate new secure variables in the TEE that are absent in
original codes for new development demands. The declarations
are functionally identical to standard C. Note that these variables
are defined in the TEE. We design five popular types of variables,
while the variables that are defined by standard C remain in the
REE. For example, as line 5 of Listing 3 shows, the private_key
is declared with STRING_TZ, specifying it is a variable in the TEE.
The signed_gpsData is declared by the char keyword of standard
C, and thus this statement is inserted into the REE.

In addition, the users can use the built-in TEE-based functions
to develop the TA rapidly. We provide the most operations in
TEE-based IoT applications. For example, the TZ_genKey() (line
6 of Listing 3) function to generate a user-specified key and the
TZ_sign_rsa_sha1() (line 8 of Listing 3) function to sign the data

1 FROM DroneAPP/main.c FUNC main {
2 // To permanently store the data in secure storage
3 TZ_STORE gpsData;
4 }

1 int encrypt_sub(/*...*/) {
2 // substitution implementation
3 }
4 FROM DroneApp/main.c FUNC main {
5 TZ_FUNC_SUB parseRawData ((/**/) encrypt_sub(/**/);
6 }

Listing 4: Illustration of logic-based program declaration of

D-lang.

with the private key of RSA by the SHA-1 algorithm. Further, we de-
sign various built-in peripheral functions for accessing the devices.
The users can declare the insert keywords of configuration state-
ments and use the homogeneous functions of TZ_digitalWrite()
to develop their secure IoT application drivers rapidly.

Tiered Protection. Existing works [29, 42] can automatically
protect the variables. However, they do not provide a programming
interface that could enable users to specify to what extent they
want to protect the variables, e.g., only protect the integrity or
protect both integrity and confidentiality. Hence, dTEE provides
tiered protection of variables and functions, as shown in Table 1.

Our analysis identifies that non-tiered annotation of sensitive
data is insufficient for IoT development needs. For example, in
the autopilot scenario, where safety is a critical topic, the central
controller desires the vehicle to be controllable thus means that
the velocity decision is trusted. Further, the users cannot tolerate
the geolocation information leaking. Towards the aforementioned
goals, the developers need to protect not only the integrity of vehicle
steering but also the confidentiality of the position.

Therefore, we propose five tiered degrees of sensitive variables
for protection in TEE, one for permanent and four for temporary.
(1) TZ_DATA_STORE. This keyword permanently protects sensitive
data based on the secure storage mechanism [22] of TEE. This
mechanism is used to protect crucial sensitive data, such as bio-
logical information. The following keywords support temporary
tiered protection. (2) TZ_DATA_ONLY. This keyword only protects
the annotated data, excluding tainted statements. (3) TZ_DATA_CONF.
This keyword protects the declared data and other tainted data
and functions that forward the data flow for confidentiality. (4)
TZ_DATA_INTG. As shown in Listing 2, contrary to the previous,
this keyword protects the sources of specific data through the back-
ward data-flow and control-flow for integrity. (5) TZ_DATA_ALL.
This combined TZ_DATA_CONF and TZ_DATA_INTG for both confi-
dentiality and integrity.

However, it is not expressive enough for D-lang to only provide
the insert statements. The TZ_FUNC_SUB keyword is another usage
dimension of trusted logic. This keyword can substitute the original
function with a new function implemented in D-lang files that
facilitate users modifying their customized logic of a specific func-
tion. For example, as shown in Listing 4, the parseRawData() func-
tion is a non-TEE-based function in the original code of Alidrone
(Listing 1), while its functionality cannot satisfy the new security
demands. Hence, users can write the TZ_FUNC_SUB keyword to
substitute parseRawData() by the encrypt_sub() function.

Tong Sun1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

Table 1: D-lang keywords overview

Statement types Keywords Comments

General
FROM, FUNC

The general format for D-lang files.
FROM{...} FUNC{...}

Declarative Develop-
ment of Trusted Logic

@DRIVER, INSERT_AFTER [], END_INSERT Configure the TEE environment.
INT_TZ, CHAR_TZ,

FLOAT_TZ, STRING_TZ, STRUCT_TZ
Declare secure variables which have not existed in the original apps.

TZ_genKey(), TZ_sign_rsa_sha1(), ... Built-in crypto functions, including enc/dec, sign/verify, hash, and random.
TZ_digitalWrite(), TZ_digitalRead(), ... Built-in peripheral APIs.

Tiered Protection

TZ_STORE Permanently protect data based on the secure storage mechanism.
TZ_DATA_ONLY, TZ_DATA_CONF,
TZ_DATA_INTG, TZ_DATA_ALL

Tiered degrees for temporary protection.

TZ_FUNC Protect functions.
TZ_FUNC_SUB Substitute an original function with a new function.

foo1 ()

foo2 ()

foo3 ()

1. Protect functions 2. dCFG optimization

REE REE TEE REE TEE

foo1 ()

foo2 ()

foo3 ()

foo1 ()

foo2 ()

foo3 ()

untrusted
node in REE

wrapper
code in REE

trusted
node in TEE

control flow

Figure 3: dCFG optimization.

5.2 dCFG-based Code Generation

After the developer uses D-lang to declare their demands of sen-
sitive function or data protection, dTEE needs to automatically
find them and their dependencies into the TEE to protect them. A
straightforward approach is to execute the entire application within
the TEE [32], but this is constrained by the limited secure mem-
ory (see §7). An alternative approach is to fine-grained partition
the program based on security-sensitive statements. However, our
observation is that the world switching overhead is a considerable
proportion.

Through the measurements on Raspberry Pi 3B+, we conclude
that three times of world switch could occur the execution over-
head of ∼150 microseconds. As shown in Figure 3, if these five
calls could be packaged into one in the TA, the world switching
overhead would be reduced to ∼42 microseconds. Our key insight
is that if multiple statements such as consecutive function execu-
tions, can be bundled together and placed within the TEE without
compromising security, it can reduce the overhead associated with
world-switching. Thus, we propose a dCFG-based code partitioning
mechanism to obtain the optimized code partition by considering
the world switching overhead. This mechanism contains the follow-
ing two stages. First, we construct a declarative CFG (dCFG) based
on the basic CFG generated in the code analysis process. Second, we
propose an algorithm to obtain an optimized partition with dCFG.

dCFG construction. In order to highlight the advantages of
dCFG in analyzing code logic, we first introduce the following
example.

We adapted the drone application in Listing 1 by adding more
control statements to the original application, shown in Listing 5. It
exhibits a mainly characteristic feature of IoT applications, namely,
its primary logic is always in the while loop. If the drone’s mode is
set to low power, it will cease sampling the GPS; otherwise, it will
continuously sample the GPS. Let us now consider the following

1 /* DroneApp/main.c */
2 int main() {
3 /* ... */ // Initialization
4 while (1) { // Primary logic
5 if (mode == "Low Power") {
6 lowPowerMode ();
7 printf("Save energy ...");
8 sleep (1000);
9 } else {
10 rawDataType rawData = getRawData ();
11 GPSDataType gpsData = parseRawData(rawData);
12 /* ... */
13 }
14 }
15 }

Listing 5: The core application logic of an adapted DroneAPP.

ENTRY: main

while (1)

if
getRawData ()

parseRawData ()
STRING_TZ *private_key

TZ_genKey ()

char *signed_gpsData

TZ_sign_rsa_sha1 ()

lowPowerMode ()

printf ()

sleep ()

EXIT

Figure 4: The dCFG construction for Listing 5. The nodes

within dash block are new constructed by dTEE.

security requirements of the developers: not only do they wish to
protect the GPS data collection process as in the D-lang of Listing 3,
but they also aim to safeguard the lowPowerMode() function to
prevent attackers from disrupting the drone’s transition into low-
power mode.

We formulated the following rules to construct a dCFG according
to the source code and D-lang files mentioned earlier.

Step 1. We need to generate a graph for each function according
to the source code, which directly represents the program logic of
CA. Each statement in the code represents a node, such as a variable
declaration statement. Note that the caller function is regarded as a
node, instead of the internal logical structure of the callee function.

Step 2. For INSERT, according to the code line number and code
logic of INSERT, insert the corresponding node in the correspond-
ing position of the graph (e.g., the signed_gpsData node in the
Figure 4), which indicates that CA called the TA function. The dTEE
marks the node according to the security attribute of the statement.

Step 3. For TZ_DATA, we get the statements related to the pro-
tected variable according to the taint analysis and mark them in the

dTEE: A Declarative Approach to Secure IoT Applications Using TrustZone

CFG diagram. If all statements in a function are tainted, the whole
function is considered a protected function, which will be put in
TA. These protected functions will be handled in the next step.

Step 4. For TZ_SUB and TZ_FUNC, we mark the statements in the
CFG diagram according to these keywords.

We generate a dCFG for this example according to the rules, as
Figure 4 shows. In step 1, we generate a DAG where each node
represents a statement in the example. In step 2, we add the nodes
generated between INSERT_AFTER and END_INSERT. We mark the
STRING_TZ node, the TZ_genKey node, and the TZ_sign_rsa_sha1
node because they are protected. In step 3, the rawData node and
the gpsData node will be marked according to the result of the
taint analysis. In step 4, the lowPowerMode() node will be marked
because it is a trusted function.

Partitioning algorithm. Following the described procedures,
we derive a graph of statements that encapsulates all developer spec-
ifications. This graph is characterized as a directed acyclic graph
𝐺 (𝑉 , 𝐸), with vertices denoting logic blocks and edges signifying
data flow. Our partitioning challenge is formulated as a numerical
optimization, aiming to optimally allocate each logic block to either
the secure or non-secure realm, adhering to security objectives. The
placement of a logic block is denoted by a binary indicator 𝑋𝑏𝑖 ,𝑤𝑖

.
We formulate our partitioning problem as a numerical optimiza-

tion problem, striving to allocate logic blocks to either the secure
or non-secure world in adherence to security objectives. We use a
binary indicator 𝑋𝑏𝑖 ,𝑤𝑖

to denote the placement of the logic block.

𝑋𝑏𝑖𝑤𝑖
=

{
1 logic block 𝑏𝑖 is assigned to world𝑤𝑖

0 logic block 𝑏𝑖 is not assigned to world𝑤𝑖

, (1)

where𝑤𝑖 represents the possible placement world of block 𝑏𝑖 .
We assign a sensitivity level to each sensitive variable. We define

a set 𝑆 = {𝑠0, 𝑠1, ..., 𝑠𝑘 }, where 𝑠𝑖 is the 𝑖th sensitivity level.

𝑌𝑏𝑖𝑠 𝑗 =

{
1 logic block 𝑏𝑖 uses a variable with sensitivity 𝑠 𝑗
0 logic block 𝑏𝑖 does not use variables with sensitivity 𝑠 𝑗

,

(2)
Let a full path be denoted as 𝑝 , spanning from a source to a sink

vertex. Using 𝑙𝑒𝑛(𝑝), 𝛿 (𝑝), and 𝑃 (𝐺), we represent the path’s length,
its vertex count, and the complete path set in graph𝐺 , respectively.
Our optimization objective is represented as𝑚𝑖𝑛𝑚𝑎𝑥𝑝∈𝑃 (𝐺)𝑙𝑒𝑛(𝑝).
Given that 𝑙𝑒𝑛(𝑝) aggregates latencies of data processing and trans-
mission across placements, we define our goal with the binary
indicator 𝑋𝑏𝑖 ,𝑤𝑖

∈ 0, 1 as:

argmin
𝑋

max
𝑝∈𝑃 (𝐺)

𝛿 (𝑝)∑︁
𝑖=1

∑︁
𝑤𝑖 ∈𝑊𝑖

𝑋𝑏𝑖𝑤𝑖
𝑇
𝐶𝑜𝑚𝑝

𝑏𝑖𝑤𝑖

+
𝛿 (𝑝)−1∑︁
𝑖=1

∑︁
𝑤𝑖 ∈𝑊𝑖

𝑤𝑖′ ∈𝑊𝑖′

𝑋𝑏𝑖𝑤𝑖
𝑋𝑏𝑖′𝑤𝑖′𝑇

𝑇𝑟𝑎𝑛𝑠
𝑏𝑖𝑤𝑖𝑤𝑖′

subject to:
𝛿 (𝑝)∑︁
𝑖=1

∑︁
𝑤𝑖 ∈𝑊𝑖

𝑋𝑏𝑖𝑤𝑠𝑒𝑐
𝑚𝑏𝑖 ≤ 𝑀

𝑌𝑏𝑖𝑠 𝑗 ≤ 𝑋𝑏𝑖𝑤𝑠𝑒𝑐

(3)

where 𝑖 and 𝑖 ′ denote adjacent vertices in path 𝑝 , such that 𝑖 ′ = 𝑖 +1.
𝑊𝑖 indicates potential placements (secure or non-secure world) for
the 𝑖-th logic block. 𝑇𝐶𝑜𝑚𝑝

𝑏𝑖𝑤𝑖
and 𝑇𝑇𝑟𝑎𝑛𝑠

𝑏𝑖𝑤𝑖𝑤𝑖′
respectively define data

processing time for block 𝑏𝑖 at placement𝑤𝑖 and transmission time
between blocks 𝑏𝑖 and 𝑏 ′𝑖 across placements 𝑤𝑖 and 𝑤 ′

𝑖
. We posit

that transmission time is trivial if consecutive blocks occupy the
same world. Thus we have:

𝑇𝑇𝑟𝑎𝑛𝑠
𝑏𝑖𝑤𝑖𝑤𝑖′

=

{
𝑟𝑖𝑖′𝑡𝑖𝑖′𝑘 𝑤𝑖 ≠ 𝑤𝑖′

0 𝑤𝑖 = 𝑤𝑖′
, (4)

where 𝑟𝑖𝑖′ denotes the data size transmitted across edge (𝑖 , 𝑖 ′), and
𝑡𝑖𝑖′𝑘 is a method-specific factor quantifying the transfer time us-
ing method 𝑘 between blocks 𝑖 and 𝑖 ′. Data can be transmitted
between worlds through two predominant methods: register-based
and shared-memory-based transmissions. Typically, the former is
faster than the latter but has a limited number of parameters (e.g.,
four). We recognize the numbers and types of parameters to auto-
matically select which transmission methods after optimization.

The optimization problem introduces further constraints: (i) given
the restricted secure memory in TrustZone, the aggregate memory
use, quantified as

∑𝛿 (𝑝)
𝑖=1

∑
𝑤𝑖 ∈𝑊𝑖

𝑋𝑏𝑖𝑤𝑖
𝑚𝑏𝑖 for all logic blocks in the

secure domain, cannot exceed the secure world’s capacity𝑀 .𝑚𝑏𝑖
denotes the maximum memory allocation for a given logic block.
(ii) dTEE must respect user specifications to place particular blocks
into the secure world due to tiered variable considerations.

However, the problem formulation presented in Equation (3)
characterizes a quadratic minimax dilemma, proven to be NP-hard
in complexity [14]. Thanks to the McCormick relaxation, we can
re-formulate the problem to make it follow standard integer pro-
gramming problem (ILP) formulation. We introduce auxiliary vari-
able 𝜐 = 𝑋𝑏𝑖𝑤𝑖

𝑋𝑏𝑖′𝑤𝑖′ and 𝑧, to convert the inner max function to a
set of constraints to make it follow standard ILP formulation. The
re-formulated Equation (3) is illustrated as:
Objective: argmin

𝑋

𝑧

Subject to:

𝑧 ≥
𝛿 (𝑝)∑︁
𝑖=1

∑︁
𝑤𝑖 ∈𝑊𝑖

𝑋𝑏𝑖𝑤𝑖
𝑇
𝐶𝑜𝑚𝑝

𝑏𝑖𝑤𝑖
+
𝛿 (𝑝)−1∑︁
𝑖=1

∑︁
𝑤𝑖 ∈𝑊𝑖

𝑤𝑖′ ∈𝑊𝑖′

𝜐𝑖𝑠𝑖𝑠𝑖′𝑇
𝑇𝑟𝑎𝑛𝑠
𝑏𝑖𝑤𝑖𝑤𝑖′

,∀𝑝 ∈ 𝐺.

(5)
The constraints of 𝜐 are linear [14], and thus we can efficiently

solve the function by the standard solver, e.g., lp_solve.
It is worth noting that the dCFG optimization process is capable

of targeting multi-TAs. dCFG can set the safe memory for different
applications and solve it by considering the constraints of multiple
applications. Since existing mainstream TEE OSes (e.g., OP-TEE,
TinyTEE, etc.) for mobile and IoT devices do not support multi-
thread TA, it is not feasible to directly use multi-thread libraries
such as pthreads. We suggest one way to execute multi-thread TA
is instead by running two TAs concurrently.

5.3 Peripheral-oriented Library Porting

Mechanism

It is crucial for dTEE can transform non-secure library files to TEE-
based since IoT applications usually have lots of libraries based on

Tong Sun1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

Table 2: Three types for protecting libraries of IoT apps

Types Portable libraries Auto-transformable libraries Manually-transformable libraries

Program logic No changed No changed Changed
Transformation No need Need Need

Conditions

All the functions supported by TEE,
and no operations of Linux system calls.

The peripheral libs of IoT apps
use mmap() operation to access GPIO.

The developers add new logic,
or the libs increase the TCB significantly.

Examples Libquirc [11], Libnmea [24] LibwiringPi [19] Libopenssl [35], Libcrypto [35]
Konstantin et al. [42] ✓ ✘ ✘

Glamdring [29] ✓ ✘ ✘

dTEE (Our paper) ✓ ✓ ✓

physical interaction for functionalities, such as r/w GPIOs and sam-
pling sensors. Since existing works lack concern about peripheral
interactions, there is no solution adaptable to IoT applications today.
Furthermore, we systematically discover three types of non-secure
libraries when protecting them into TEE-based. Table 2 illustrates
the details of library types. We first propose a peripheral-oriented
library porting mechanism.

Portable libraries. This type of library is the simplest type of
protection. These library files are restricted to all the functions
supported by the TEE OS and no Linux system calls (e.g., open(),
close(), write()) invocation. The prevalent TEE operating sys-
tems typically support a subset of the Standard C Library. Conse-
quently, portable libraries within these environments are subject
to stringent constraints.

For example, the Quirc [11] is a widely used library for extracting
and decoding QR codes in IoT scenarios. If the developers try to
execute these algorithms in the TEE, they can use dTEE with two
approaches. The first approach is that users provide the source code
of the Quirc library and the header files. Then, the dTEE can cross-
compile the Quirc source code to a static library (i.e., libquirc.a).
Afterward, the static library is linked to the TA when the dTEE
compiles the TA. Finally, the TA can use Quirc APIs provided by the
header files in the TEE, achieving the developers’ goals. The second
approach is the users only provide a finished cross-compiled static
library of Quirc. They need to declare the location and name of the
libquirc.a file in the declarative file. Consequently, the dTEE can
link this static library when compiling the TA. We emphasize that
this is the only type of library that existing works can successfully
protect in the TEE [29, 32, 42].

Auto-transformable libraries. This type of library is more
complex than portable libraries because of its interaction with the
physical world using peripherals. IoT devices can be dichotomized
into: (i) MMU-equipped devices employing memory-mapped tech-
niques to access hardware resources, e.g., GPIO and registers, facil-
itated by mapping physical to virtual addresses, often via the mmap
interface; and (ii) non-MMU devices directly interfacing with hard-
ware through physical address manipulation. dTEE is applicable
to both aforementioned device categories. For the latter, the trans-
formation of peripheral libraries is straightforward, given that the
manner in which the peripheral library controls physical hardware
addresses in the non-secure world mirrors its operations in the
secure world, thus inherently supporting automatic transformation.
However, for the former, the process is more intricate due to the
absence of interfaces akin to mmap in TEE OSes.

For example, LibwiringPi [19] is a prominent C/C++ peripheral li-
brary for the renowned IoT platform Raspberry Pi, principally relies

on the mmap function for GPIO operations (e.g., digitalWrite()
and digitalRead()). Directly porting these functions into the
TEE is unfeasible because a TA operating within the TEE’s user
space lacks permissions for physical address mapping to secure
memory, a privilege reserved for the TEE kernel. As a solution,
dTEE extends the basic mapping mechanism for TEE OSes (e.g., the
phys_to_virt() function in OP-TEE) and offers pre-configured
kernel-level functions for GPIO access. Specifically, dTEE incor-
porates foundational mechanisms within the TEE OS kernel to
translate physical addresses to virtual ones for peripherals. Upon
receiving the base hardware addresses from developers, dTEE pro-
ficiently transforms non-secure peripheral libraries into shadow
trusted libraries utilizing the pre-configured functions. While the in-
terface may be exploited by malicious applications to access trusted
peripherals, dTEE can enhance security by integrating access con-
trol measures to obstruct such unauthorized calls. It is highlighted
that dTEE’s primary objective is to alleviate the burden on devel-
opers by securing existing IoT applications, exploring inspection
mechanisms is out of our scope.

Manually-transformable libraries. This type of library is the
most complex situation due to the program logic has changed. In
situations where developers seek to introduce secure program logic
to established IoT applications, D-lang serves as a pivotal tool
for incorporating these security augmentations. Directly porting
applications that rely on Linux file system calls or substantial TCB
size-increasing libraries, such as the OpenSSL library [35], to a TEE
proves impractical without requisite alterations. However, dTEE
addresses these complexities through the utilization of replacement
and insertion mechanisms inherent to D-lang.

We elucidate this with two real-world examples and demon-
strate how dTEE offers countermeasures. The first example is MQT-
TZ [43], which employs software encryption from OpenSSL to
encrypt client messages. If developers intend to switch to hard-
ware chip-accelerated encryption, merely safeguarding the original
non-secure encryption within the TEE becomes redundant due
to the altered encryption logic. Another example, DarkneTZ [33]
modifies the DNN inference logic of a pre-existing framework [40].
It introduces novel program logic, designating partition points to
distinguish between sensitive layers executed in the TEE and stan-
dard layers in the REE. In such contexts, adhering to the logic of
original codes, as seen in [29] and [42], becomes moot due to the
incorporation of new security logic. To tackle the aforementioned
problems, the developers can use dTEE with the following solutions
respectively: (i) users could specify the library of cryptography to

dTEE: A Declarative Approach to Secure IoT Applications Using TrustZone

use, such as Libmbedtls and LibTomCrypt, or hardware accelerat-
ing chips, (ii) users could use insert statements that add their new
trusted logic. We will show details in §7.1.

6 SYSTEM IMPLEMENTATION

In this section, we will describe the implementation details and
the portability of dTEE. The code analysis of dTEE is built as an
extension to the Frama-C [1], an open-source, extensible analysis
framework for C software. We implement the source-to-source
transformation of code generation in Java. The transformation
can generate the TEE Client APIs and TEE Internal APIs in the
CA and TA, respectively. These generated wrappers are used for
initialization, opening, communication, closing, and finalization
between the CA and TA.

Analysis and partition.We extract the semantics of D-lang
files by the keywords, which facilitate static program analysis. For
the tiered sensitive data annotated, we use the "Impact" and "Scope
& Data-flow browsing" plug-ins [2, 3] of Frama-C for forward and
backward flow. In addition, we build call graphs of the source code
and traverse all reachable statements from these entry points. For
partition, based on the "Slicing" plug-in of Frama-C [16], we build
specifications to filter the candidate-tainted statements. We then
use the dCFG-based optimization to reduce the overhead.

Auxiliary code. After the code partition stage of dTEE, the
source code is separated into two parts but is still inadequate, lack-
ing the capability to sustain basic REE and TEE sessions. To bridge
this gap, dTEE synthesizes auxiliary code. To ensuring TEE in-
dependence, we adopt standard TEE Client and Internal APIs as
standardized by GlobalPlatform [18] and adopted by prevalent TEE
OSes like OP-TEE [28] and QSEE [39]. Typically, the CA and TA
consist of five skeleton functions to maintain a connection between
CA and TA. We produce paired initialization, session, and finaliza-
tion codes for the CA and TA. Subsequent command invocations
are tailored based on CA-to-TA function calls. Given the stringent
datatype definitions in the TEE-based programming model, dTEE
scrutinizes the security of data flows, leaning on constant data
types. Moreover, we generate unique identifiers for each TA situ-
ated within the TEE.

On the non-secure world side of the application, auxiliary code
is generated from caller parameters and returns. Given the four-
parameter limit between CA and TA, dTEE utilizes native APIs, like
TEEC_VALUE_INPUT and TEEC_MEMREF_TEMP_INPUT, for functions
with four or fewer integer or string parameters. For more extensive
requirements, dTEE reserves shared memory for parameter serial-
ization, with subsequent deserialization in TA. However, pointers in
C applications present vulnerabilities. While it might seem practical
to dereference pointers passed from CA and re-reference them in
TA, pointers can be weaponized for attacks, including confused-
deputy and TOCTOU (Time of Check, Time of Use) attacks [25].
Hence, we undertook rigorous pointer sanitation. To counteract
confused-deputy attacks, we encapsulate dereferenced pointers
in the TEE with objects controlling their lifespan and access, pre-
venting direct memory access. To preserve function logic while
resolving pointer-related concerns, consider a parameter passed
from CA to TA—a pointer to a structure with an integer and string.

We initially dereference this structure pointer and allocate a des-
ignated block of shared memory. Subsequently, we serialize the
integer and string into this memory. This serialized data is then
conveyed to the TEE. Within the TA, we reconstruct an analo-
gous structure to mirror the CA’s variable structure, enabling us
to deserialize the parameters without altering the TA’s existing
codebase. Consequently, the TA’s code executes seamlessly with
the re-referenced, deserialized parameters. We implement the se-
rialization and deserialization mechanism in the code generation
stage. Specifically, it is implemented in CA and user TA to avoid
injection attacks by malicious kernels. dTEE also conducts security
checks to ensure the integrity before transmitting it to the TA.

On the secure world side of the application, the transformation
not only generates the wrappers of parameters and commands but
also tackles the drivers of trusted devices. Specifically, dTEE offers
standardized APIs across diverse hardware platforms, ensuring that
both inherent peripheral functions and sensitive drivers are deemed
trustworthy. These intrinsic functions remain agnostic to the TEE
OS. For example, on the Raspberry Pi 3B+ platform, the function
TZ_digitalWrite() endeavors to configure the pin to the "output"
mode, referencing the addresses of GPFSEL, GPSET, and GPCLAR
registers as per the documentation [12]. While the logic of built-in
functions is contingent upon the hardware and independent of the
TEE, their generated code is TEE-specific. As an illustration, in the
TEE known as OP-TEE, the inherent peripheral code is instantiated
in optee_os/core/arch/arm/pta for pseudo-TAs [48].

7 EVALUATION

In this section, we evaluate dTEE to answer the following three
questions: (i) Does dTEE achieve better expressiveness and rapid de-
velopment than existing approaches at IoT applications? (ii)What is
the dCFG-based optimization improvement performance of dTEE?
(iii) What is the overhead of dTEE?

In our experiments, we explore the capabilities of an open source
TEE, OP-TEE [28], implemented on a widely used IoT platform,
Raspberry Pi 3B+ board [37]. We installed Raspbian Kernel Version
4.14.98 as the REE OS and OP-TEE Version 3.4.0 as the TEE OS. We
selected this board because the platform has been widely evaluated
for assessing TEE applications in prior studies. Despite the absence
of several optional TrustZone components (e.g., TZASC) in RPi
3B+, the influence on our evaluation results is negligible for two
reasons: (1) dTEE is primarily concerned with the partitioning of
existing applications, thus the absence of these components does
not affect its functionality; (2) a recent work [21] has enabled the
implementation of the security component’s functionality at the
software level on the RPi 3B, and resulting in a negligible overhead
(about 1% for some applications).

7.1 Case Study

To highlight the expressiveness of dTEE and D-lang, we show that
they can cover the core functionality of four representative TEE-
based IoT applications. The details of applications are introduced
in §3. For MQT-TZ [43], TZ4Fabric [34], and DarkneTZ [33], we
implement their core functionality while leaving out less relevant
details. For Alidrone [30], due to the lack of source code, we im-
plement it by the main idea and techniques in the literature. We

Tong Sun1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

Table 3: Real-world applications and micro-benchmarks implemented by dTEE

App Orig. app
LOC

D-lang
LOC

D-lang
Keywords

REE &TEE
Switch
Numbers

Orig. app
Binary
Size (B)

CA
Binary
Size (B)

TA
Binary
Size (B)

Konstantin
et al. [42] Glamdring [29] WaTZ [32] dTEE

Print 5 3 3 2 7.8K 12.6K 98K ✓ ✓ ✓ ✓

cJSON [17] 19 1 1 2 31K 12.4K 112.4K ✘ ✓ ✓ ✓

Concat 33 3 3 2 7.9K 6.1K 100K ✓ ✓ ✓ ✓

Blink [19] 21 1 1 2 8.3K 12.7K 97.7K ✘ ✘ ✘ ✓

Temp [19] 181 4 4 4 8.5K 12.7K 98K ✘ ✘ ✘ ✓

Humi [19] 181 4 4 4 8.5K 12.7K 98K ✘ ✘ ✘ ✓

Alidrone [30] 129 11 9 2 29K 12.6K 121.4K ✘ ✘ ✘ ✓

MQT-TZ [43] 291 5 5 2 13K 12.6K 100K ✘ ✘ ✘ ✓

TZ4Fabric [34] 89 8 6 2 8.5K 12.7K 108.2K ✘ ✓ ✓ ✓

DarkneTZ [33] 33.5K 31 31 4 366K 384K 112K ✘ ✘ ✘ ✓

Socket [27] 118 N/A N/A N/A 34K N/A N/A ✘ ✘ ✘ ✘

1 int encrypt_sub(unsigned char *plain_text , int
↩→ plain_text_len , unsigned char *key_id ,
↩→ unsigned char *iv_id , unsigned char *
↩→ cipher_text , int key_size) {

2 return TZ_enc_aes_cbc(plain_text , plain_text_len ,
↩→ key_id , iv_id , cipher_text , key_size);

3 }
4 FROM mqt -tz/hot_cache/main.c FUNC main {
5 TZ_STORE dest ->iv, dest ->key;
6 TZ_FUNC_SUB encrypt(/**/) encrypt_sub(/**/);
7 }

Listing 6: Expressing MQT-TZ with D-lang.

implement the original version for each application and the secure
version using the D-lang declaration for comparison.

MQT-TZ.MQT-TZ is a lightweight middleware attempt to de-
ploy the MQTT broker into TEE. We instantiated MQT-TZ using
libopenssl, integrating save_key and aes within MQT-TZ bro-
kers for benchmarking. The broker retains each client’s key and en-
crypts data for client transfer. The mqttz_client struct comprises
four elements: cli_id (client ID), iv (initial vector for symmetric
key), key (symmetric key), and data (payload). Data encryption
employs a 128-bit AES key. As illustrated in Listing 6, we fortified
MQT-TZ’s application by utilizing six keywords: two for sensitive
data localization, two for iv and key storage, and two for replacing
the encryption with TZ_enc_aes_cbc().

In MQT-TZ, the AES key and iv values for the client necessitate
persistent storage within the TEE’s secure domain. Consequently,
we employ TZ_STORE statements for these variables to facilitate this
storage. Notably, the original non-secure version utilizes encrypt()
from libopenssl. To ensure encryption security, MQT-TZ repli-
cates the encrypt() function within the TEE. With D-lang, this
adaptation requires merely three lines of code, attributed to TEE’s
cryptographic patterns being identified as dTEE templates, which
furnish built-in functions.

TZ4Fabric. TZ4Fabric is engineered to run smart contracts
within TEEs. In our rendition, we spotlight three smart contract
functions: create(), add(), and query(). Using D-lang and the
TZ_FUNC keyword, as illustrated in Listing 7, we emulate TZ4Fabric’s
security framework. This keyword extends security to subfunctions
as well; within create(), subfunctions like create_get_state(),
create_put_state(), and create_write_response() are invoked.
Leveraging call graphs, dTEE discerns and isolates pertinent state-
ments to the secure domain, ensuring the integrity of the smart
contract operations within the TEE.

1 FROM chaincode_proxy/main.c FUNC fabric {
2 TZ_FUNC create (), add(), query();
3 }

Listing 7: Expressing TZ4Fabric with D-lang.

1 FROM darknet/main.c FUNC main {
2 TZ_FUNC make_softmax_layer (); // We omit the other 20

↩→ functions that need to be protected.
3 }
4 FROM darknet/src/network.c FUNC network_predict {
5 INSERT_AFTER [A1]
6 /* ... */
7 END_INSERT
8 }
9 FROM darknet/src/parser.c FUNC load_weights_upto {
10 INSERT_AFTER [A2]
11 /* ... */
12 END_INSERT
13 }

Listing 8: Expressing DarkneTZ with D-lang.

DarkneTZ. DarkneTZ aims to protect sensitive DNN model
layers within the TEE against privacy breaches. Our focus is on
DNN inferencing. The DarkneTZ implementation incorporates 31
D-lang keywords, detailed in Listing 8. Specifically, 20 TZ_FUNC
keywords delineate sensitive data, such as make_softmax_layer,
while pairs of INSERT_AFTER and END_INSERT embed trust logic
within network_predict() and load_weights_upto(). Contrast-
ing the original, the enhanced security strategy executes non-
sensitive DNN layers in the non-secure domain and the sensitive
layers securely. This is achieved by leveraging INSERT_AFTER and
END_INSERTwithin theweight-loading (i.e., load_weights_upto())
and prediction (i.e., network_predict()) phases to integrate new
logic. This involves loading network weights from both REE and
TEE and isolating the final five layers within the TEE. Compared to
prior methods, our refined approach to integrating programming
logic has proven especially effective in this case study.

Alidrone. We introduced two usage examples in §4, which are
simplified cases. To represent Alidrone, one of the realistic appli-
cations with peripherals, we sufficiently exploit the D-lang ex-
pressiveness. First, the original version uses a GPS peripheral with
libnmea [24]. Second, it uses a cryptography operation that we
need to separate into the TEE.

As a countermeasure, we provided a profile of the hardware
platform (i.e., Raspberry Pi 3B+) to indicate the physical addresses
of GPIO that the dTEE could auto-transform the libraries into the

dTEE: A Declarative Approach to Secure IoT Applications Using TrustZone

1 @DRIVER "profile.h"
2 void EvpSign_sub(const unsigned char* in, int in_size ,

↩→ unsigned char* sign) {
3 TZ_sign_rsa_sha1(sign , in, Privatekey2048_E ,

↩→ Privatekey2048_D , Privatekey2048_N , &gpsData ,
↩→ 2048);

4 }
5 FROM drone.c FUNC main() {
6 TZ_DATA_ONLY Privatekey2048_E , Privatekey2048_D ,

↩→ Privatekey2048_N;
7 TZ_DATA_CONF data;
8 TZ_FUNC_SUB EvpSign () EvpSign_sub ();
9 }

Listing 9: Expressing Alidrone with D-lang.

0

200

400

600

800

Alid
rone

TZ4F
ab

ric

MQT-TZ

Dark
neT

Z

R
ed

uc
ed

 L
O

C

(a)

0%

25%

50%

75%

100%

Alid
rone

TZ4F
ab

ric

MQT-TZ

Dark
neT

Z%
 o

f R
ed

uc
ed

 L
O

C

(b)

Figure 5: Reduced LOC (a) and code rate (b) by dTEE.

TEE. As Listing 9 shows, we use @DRIVER to specify the profile path.
To transform the signature operation in the original version, we use
the tiered-protection keywords to secure the data and substitute-
function keywords to secure the function. For example, we use
TZ_DATA_ONLY to secure the constant of the private key of RSA as a
TEE runtime variable, while for the GPS data, we use TZ_DATA_CONF
to protect the subsequent operations.

7.2 Expressiveness and Lines of Code Reduction

Benchmarks. To be comprehensive, we use two sets of bench-
marks implemented by dTEE: real-world applications and micro-
benchmarks. The real-world applications illustrate how dTEE ex-
presses the existing IoT apps, including those we used as related
works. For micro-benchmarks, to evaluate the expressiveness and
rapid development of dTEE, on the one hand, we select typical
IoT tiny examples from LibwiringPi [19] that contains LED blinks,
reading temperature, and humidity; on the other hand, we use a
small library cJSON [17] and two tiny function apps (i.e., Print and
Concat). The Print app is for printing a string and the Concat app
is for concatenating strings. In addition, we select a normal Socket
app [27] for sending messages by networks.

Results of benchmarks. Glamdring [29] is tailored for SGX,
whereas [42] is designed for Android applications. While a direct
comparison of execution time with dTEE may not be equitable,
their expressiveness can be juxtaposed. Table 3 shows the results
of benchmarks and Figure 5 shows the reduced LOC of real-world
applications. The checkmark entailed in Table 3 means feasibility
and guarantees for security. Specifically, observations are as follows.
(i) On the expressiveness, as Table 3 shows, we can observe that
90.9% of applications can be implemented by dTEE, especially the
IoT applications that existing works are not adapted. Due to the
peripheral-oriented library porting mechanism (see §5.3), dTEE
can provide automatic transformation of the prevalent sensor dri-
vers (e.g., IMU and temperature & humidity sensors) of various IoT
devices to the trusted ones. Nonetheless, if the partitioning of an
existing application notably expands the Trusted Computing Base

Table 4: Comparison with the existing work w.r.t execution

efficiency. The results are evaluated and averaged on the

speedtest1 benchmarks of SQLite [45].

Execution time Memory usage
Overall Switching Overall Wasm runtime

WaTZ [32] 2,160 ms / 12.10 MB 9.15 MB
dTEE (w/o dCFG opt) 1,217 ms 460.27 ms 2.14 MB /
dTEE (w/ dCFG opt) 1,050 ms 293.03 ms 2.89 MB /

(TCB) attack surface, dTEE abstains from conversion and warns
developers. More complex peripherals (e.g., NIC), which necessitate
sophisticated library drivers, cannot be directly transformed by
dTEE, because these peripherals necessitate sophisticated library
drivers thereby requiring large TCB (e.g., the Socket application
in Table 3) [26, 51]. Fortunately, these complex peripherals can
be implemented through the record-replay mechanism [20], i.e.,
recording the interaction between the CPU and MMIO in the pe-
ripheral driver offline and replaying them in the TEE online. While
the current prototype of dTEE lacks implementation of this mecha-
nism, it is designed to be complementary to the existing automatic
library conversion mechanism.

(ii) On the lines of code reduction, as shown in Figure 5, we
find that dTEE can reduce more than 90% lines of code in real-
world IoT applications compared to developers using OP-TEE alone.
Since D-lang has a lot of built-in functions of peripherals and
cryptography, dTEE achieves few keywords and lines of code of D-
lang to represent the security demands of trusted IoT applications,
shown in Table 3.

7.3 dTEE vs. WaTZ

In order to demonstrate the advantages of utilizing dTEE, a compar-
ative analysis withWaTZ [32] is presented.WaTZ is the state-of-
the-art work in automatically transitioning existing applications to
become compatible with TrustZone. Similarly, both dTEE andWaTZ
are focused on securing applications into TEE-enabled ones that
comparison between them is suitable. Note thatWaTZ compiles the
entire application code into WebAssembly bytecode and executes
it in the TEE without modifying the code. To enable WebAssembly
execution in the TEE, WaTZ ports the WAMR runtime [4] into the
TEE, significantly increasing the TCB size. Evaluating on QEMU
v8, as indicated in Table 4, reveals that WaTZ’s WAMR runtime
occupies ∼9MB of secure memory (∼69% of QEMU v8’s total secure
memory) even without executing any application. It is notable that
secure memory is a scarce resource, even on high-end IoT devices,
such as the Hikey960 development board, which has a maximum
available secure memory of 64MB.

We next compare dTEE and WaTZ in the context of a mobile
widespread database engine (SQLite [45]), focusing on secure mem-
ory usage, execution time, and code modifications. Our analysis fo-
cuses on the speedtest1 [46], a performance benchmark for SQLite
that encompasses diverse input datasets and SQL statements. As
illustrated in Table 4, we averaged the results for each benchmark,
contrasting WaTZ and dTEE both pre- and post-implementation
of dCFG-based optimization (cf. §5.2). In terms of execution time,
we observed that: (i) Before performing dCFG-based optimization,
dTEE reduces at 44% of WaTZ due to its native execution, whereas
WaTZ executes WebAssembly bytecode, inherently incurring a

Tong Sun1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

0
60
120
180
240
300

Blin
k

Conca
t

cJ
SON

Prin
t

Tem
p

Humi

Alid
rone

TZ4F
ab

ric

MQT-TZEx
ec

ut
io

n
Ti

m
e

of

C
om

pl
et

e
A

pp
(m

s) Manual dTEE

Figure 6: Complete execution time of

TEE-based applications. The develop-

ment approaches of manual and dTEE

are compared.

0

0.5

1

1.5

2

Blin
k

Conca
t

cJ
SON

Prin
t

Tem
p

Humi

Alid
rone

TZ4F
ab

ric

MQT-TZ

Ex
ec

ut
io

n
Ti

m
e

R
at

e
of

 C
M

D

Figure 7: CMD execution overhead rate

between original application and dTEE

applications. The red line (—) represents

the manual approach.

0
200
400
600
800

1000

1 2 3 4 5

Ex
ec

ut
io

n
Ti

m
e

(m
s)

World Switching Times
Without dCFG Optimization
With dCFG Optimization

Figure 8: Execution time of different

world switching times with/without

dCFG.

1.7∼2x computational overhead, aligning with the experimental
results of WaTZ and measurement work [50]. (ii) After performing
dCFG-based optimization, dTEE reduces execution time by 13.7%
compared to it without optimization, attributable to the diminished
time spent switching between REE and TEE. In terms of mem-
ory usage, we observed that: (i) WaTZ’s WAMR runtime occupies
∼9MB of secure memory even without executing any application.
(ii) After reducing the runtime memory of WAMR, theWaTZ mem-
ory usage is comparable to that of dTEE. Besides, owing to the
dCFG-based optimization, which aims to achieve optimized exe-
cution time, more continuous database operations are placed in
the TEE, thus attaining ∼1.16x the secure memory usage prior to
optimization.

For the speedtest1 benchmark, dTEE only requires the addition
of 33 lines of Dlang code to protect each benchmark’s sensitive
variables and functions, while the entire speedtest1 and SQLite
comprises 25.2K lines of code. Consequently, we can conclude that
dTEE can achieve faster execution times and smaller securememory
usage than WaTZ by modifying a minimal number of code lines.

7.4 Overhead of dTEE

We evaluate the overhead of dTEE from two aspects, the static
memory overhead and the execution time overhead on benchmarks.
The results exclude the DarkneTZ because it lacks the manual
approach to transformation.

Table 3 shows the binary size of CA and TA. While CA exhibits
minimal memory overhead relative to the original applications, TA
displays an enlarged binary size due to its incorporation of numer-
ous TEE internal functions and linkage with static libraries. It is
noteworthy that only D-lang’s built-in functions yield slight mem-
ory increases compared to the manual approach. This is because
the manual method allows developer customization within applica-
tions, such as the integration of specialized libraries, a capability
absent in dTEE’s inherent functionality. Nonetheless, the adapta-
tion and enhancement of dTEE’s built-in functions can be achieved
through continuous revisions of its implementation version.

In Figure 6, we depict the comprehensive execution times of
benchmarks, while Figure 7 focuses on the core function command
(CMD) execution times, e.g., TEEC_InvokeCommand(). The man-
ual method in the experiment in Figure 6 is for developers to use
OP-TEE directly. The performance of dTEE aligns closely with the
manual approach, incurring a mere 6.6% execution overhead at
its peak. For micro-benchmarks, both methods are almost indistin-
guishable in execution time, primarily because dTEE-generated glue
code mirrors that of the manual counterpart. However, in intricate

real-world applications, dTEE’s execution time lags slightly due to
its universal, and potentially excessive, auxiliary code for bridging
REE and TEE. An instance is MQT-TZ, where a manual technique
can cache keys rather than re-triggering a read API with every
encryption, as done by dTEE. This limitation, rooted in dTEE’s
generic design, can potentially be mitigated by auto-detecting and
eliminating superfluous code.

7.5 Performance Optimization

We demonstrate the improved performance of dCFG-based code
partition (§5.2) on the Alidrone [30]. Specifically, Alidrone has two
operations, digesting with the SHA-1 algorithm and signing with
an RSA private key. To optimize these operations, dTEE generates
an entry function that invokes them in the TEE instead of invoking
them from REE individually.

As Figure 8 shows, with the switching times of TEE and REE
increasing, the overhead (e.g., changing privileged mode and pre-
serving CPU context) of execution time increases, but dCFG-based
code partition can improve performance by about 1.35x~1.48x. In
the future, we will consider introducing automation for identifying
sensitive data without users manually declaring, which can further
relieve the developers’ effort. In addition, wewill consider designing
more application-specific operators to improve performance.

7.6 Discussion

Support for other TEEs. dTEE is designed for ARM’s TrustZone
to reflect its dominance in mobile and IoT markets. However, dTEE
presents feasibility for adaptation to support other TEEs, e.g., Intel’s
SGX, a TEE architecture prevalent in cloud computing and data
centers. The adaptation process necessitates no changes in the code
declaration and analysis phases but requires modifications in the
code partitioning and generation stages due to distinct TEE APIs,
notably ecall and ocall, used in SGX environments. The dCFG
optimization process is applicable across various TEE platforms
due to its design as a generalized optimizer. Furthermore, there
is potential for dTEE to be extended to support emerging RISC-V
based TEEs, such as VirtualZone [41].

Trade-off between performance and expressiveness. To
support declarative development, dTEE tradeoffs performance for
expressiveness to some extent. For example, the current implemen-
tation of dTEE does not support fine-grained concurrency control
over the IoT device. This trade-off reflects the principle that in-
creased expressiveness typically leads to reduced performance effi-
ciency. Future developments in dTEE aim to introduce hierarchical
tools that cater to varying developer expertise levels.

dTEE: A Declarative Approach to Secure IoT Applications Using TrustZone

8 CONCLUSION

We present dTEE, a declarative approach to secure IoT applications
based on TrustZone.With dTEE, users could declare tiered-sensitive
variables and add new trusted logic for their security demands. Com-
pared with existing works, dTEE achieves high expressiveness for
supporting 50% more applications. We evaluate dTEE on real-world
IoT applications and seven micro-benchmarks. Results show that
dTEE reduces 90% of the LOC against handcrafted development.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and
the shepherd for their valuable comments and helpful suggestions.
This work is supported by the National Natural Science Foundation
of China under Grant No. 62072396 and 62272407, the “Pioneer”
and “Leading Goose” R&D Program of Zhejiang under grant No.
2023C01033, and the National Youth Talent Support Program. Wei
Dong is the corresponding author.

REFERENCES

[1] 2022. Frama-C - Framework for Modular Analysis of C programs. https://frama-
c.com.

[2] 2022. Impact analysis plug-in. https://frama-c.com/fc-plugins/impact.html.
[3] 2022. Scope & Data-flow browsing plug-in. https://frama-c.com/fc-plugins/

scope.html.
[4] 2023. WebAssembly micro runtime. https://github.com/bytecodealliance/wasm-

micro-runtime.
[5] Mohammed Al-Khafajiy, Safa Otoum, Thar Baker, Muhammad Asim, Zakaria

Maamar, Moayad Aloqaily, Mark Taylor, and Martin Randles. 2021. Intelligent
control and security of fog resources in healthcare systems via a cognitive fog
model. ACM Transactions on Internet Technology 21, 3 (2021), 1–23.

[6] Tejasvi Alladi, Vinay Chamola, et al. 2020. HARCI: A Two-Way Authentication
Protocol for Three Entity Healthcare IoT Networks. IEEE Journal on Selected
Areas in Communications (JSAC) 39, 2 (2020), 361–369.

[7] Android. 2022. Trusty TEE. https://source.android.com/security/trusty.
[8] ARM. 2022. TrustZone for Cortex-A. https://www.arm.com/technologies/

trustzone-for-cortex-a.
[9] Arm. 2023. TrustZone Address Space Controller. https://developer.arm.com/

documentation/ddi0431/c/introduction/about-the-tzasc/features-of-the-tzasc.
[10] Hasina Attaullah, Tehsin Kanwal, Adeel Anjum, Ghufran Ahmed, Suleman Khan,

Danda B Rawat, and Rizwan Khan. 2021. Fuzzy-Logic-Based Privacy-Aware
Dynamic Release of IoT-Enabled Healthcare Data. IEEE Internet of Things Journal
9, 6 (2021), 4411–4420.

[11] Daniel Beer. 2022. Quirc. https://github.com/dlbeer/quirc.
[12] BROADCOM. 2022. BCM2835 ARM Peripherals. https://www.raspberrypi.org/

app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf.
[13] Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik. 2021. On the root of

trust identification problem. In Proc. of ACM/IEEE IPSN.
[14] Raphael Eidenbenz and Thomas Locher. 2016. Task allocation for distributed

stream processing. In Proc. of IEEE INFOCOM.
[15] The Eclipse Foundation. 2023. Eclipse Mosquitto - An open source MQTT broker.

https://mosquitto.org/.
[16] FRAMA-C. 2022. Slicing plug-in. https://frama-c.com/fc-plugins/slicing.html.
[17] Dave Gamble. 2022. Ultralightweight JSON parser in ANSI C. https://github.

com/DaveGamble/cJSON.
[18] GlobalPlatform. 2022. GlobalPlatform. https://globalplatform.org.
[19] Gordon. 2022. WiringPi. https://github.com/WiringPi/WiringPi.
[20] Liwei Guo and Felix Xiaozhu Lin. 2022. Minimum viable device drivers for ARM

TrustZone. In Proc. of ACM EuroSys.
[21] Seung-Kyun Han and Jinsoo Jang. 2023. MyTEE: Own the Trusted Execution

Environment on Embedded Devices.. In Proc. of NDSS.
[22] Shunrui Huang, Chuanchang Liu, and Zhiyuan Su. 2019. Secure Storage Model

Based on TrustZone. In IOP Conference Series: Materials Science and Engineering,
Vol. 490. IOP Publishing, 042035.

[23] Intel. 2022. Intel®SoftwareGuardExtensions (Intel®SGX). https:
//www.intel.com/content/www/us/en/architecture-and-technology/software-
guard-extensions.html.

[24] Jacketizer. 2022. libnmea: Lightweight C library for parsingNMEA 0183 sentences.
https://github.com/jacketizer/libnmea.

[25] Xeno Kovah, Corey Kallenberg, Chris Weathers, Amy Herzog, Matthew Albin,
and John Butterworth. 2012. New results for timing-based attestation. In Proc. of

IEEE S&P.
[26] Seung-seob Lee, Hang Shi, Kun Tan, Yunxin Liu, SuKyoung Lee, and Yong Cui.

2019. S2Net: Preserving Privacy in Smart Home Routers. IEEE Transactions on
Dependable and Secure Computing 18, 3 (2019), 1409–1424.

[27] Browny Lin. 2022. Simple socket example. https://gist.github.com/browny/
5211329.

[28] Linaro. 2022. Open Portable Trusted Execution Environment. https://www.op-
tee.org.

[29] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. 2017. Glamdring: Automatic Application Partitioning for Intel
SGX. In Proc. of USENIX ATC.

[30] Tianyuan Liu, Avesta Hojjati, Adam Bates, and Klara Nahrstedt. 2018. Alidrone:
Enabling Trustworthy Proof-of-Alibi for Commercial Drone Compliance. In Proc.
of IEEE ICDCS.

[31] JämesMénétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. 2021. Twine:
An embedded trusted runtime for webassembly. In Proc. of IEEE ICDE.

[32] JämesMénétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. 2022. WaTZ:
A Trusted WebAssembly Runtime Environment with Remote Attestation for
TrustZone. In Proc. of IEEE ICDCS.

[33] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ: Towards
Model Privacy at the Edge using Trusted Execution Environments. In Proc. of
ACM MobiSys.

[34] Christina Müller, Marcus Brandenburger, Christian Cachin, Pascal Felber, Chris-
tian Göttel, and Valerio Schiavoni. 2020. TZ4Fabric: Executing Smart Contracts
with ARM TrustZone. In Proc. of IEEE SRDS.

[35] OpenSSL. 2022. OpenSSL. https://www.openssl.org.
[36] Nidhi Pathak, Anandarup Mukherjee, and Sudip Misra. 2020. Reconfigure and

reuse: Interoperable wearables for healthcare IoT. In Proc. of IEEE INFOCOM.
[37] Raspberry Pi. 2022. Raspberry Pi 3 Model B+. https://www.raspberrypi.com/

products/raspberry-pi-3-model-b-plus.
[38] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Compre-

hensive Survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1–36.
[39] Qualcomm. 2022. Mobile Security Solutions. https://www.qualcomm.com/

products/features/mobile-security-solutions.
[40] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:

//pjreddie.com/darknet/.
[41] RISC-V. 2023. XuanTie VirtualZone: RISC-V-based Security Exten-

sions. https://riscv.org/blog/2022/04/xuantie-virtualzone-risc-v-based-security-
extensions-xuan-jian-alibaba/.

[42] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and Abhik Roychoudhury.
2016. Automated Partitioning of Android Applications for Trusted Execution
Environments. In Proc. of IEEE/ACM ICSE.

[43] Carlos Segarra, Ricard Delgado-Gonzalo, and Valerio Schiavoni. 2020. MQT-TZ:
Hardening IoT Brokers Using ARM TrustZone. In Proc. of IEEE SRDS.

[44] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and efficient multitasking inside
a single enclave of intel sgx. In Proc. of ACM ASPLOS.

[45] SQLite. 2023. SQLite. https://www.sqlite.org/index.html.
[46] SQLite. 2023. SQLite Speedtest Benchmark. https://sqlite.org/src/file/test/

speedtest1.c.
[47] Mingyue Tang, Guimin Dong, Jamie Zoellner, Brendan Bowman, Emaad. Abel-

Rahman, and Mehdi Boukhechba. 2022. Using ubiquitous mobile sensing and
temporal sensor-relation graph neural network to predict fluid intake of end
stage kidney patients. In Proc. of ACM/IEEE IPSN.

[48] TrustedFirmware.org. 2023. Trusted Applications. https://optee.readthedocs.io/
en/latest/architecture/trusted_applications.html.

[49] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D Garcia,
and Frank Piessens. 2019. A Tale of Two Worlds: Assessing the Vulnerability of
Enclave Shielding Runtimes. In Proc. of ACM CCS.

[50] Yutian Yan, Tengfei Tu, Lijian Zhao, Yuchen Zhou, and Weihang Wang. 2021.
Understanding the performance of webassembly applications. In Proc. of ACM
IMC.

[51] Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin Jiang, Priyank Thavai, and
Wenliang Du. 2018. Truz-droid: Integrating trustzone with mobile operating
system. In Proc. of ACM MobiSys.

[52] Wenjin Yu, Yuehua Liu, Tharam Dillon, Wenny Rahayu, and Fahed Mostafa.
2021. An integrated framework for health state monitoring in a smart factory
employing IoT and big data techniques. IEEE Internet of Things Journal 9, 3
(2021), 2443–2454.

[53] Yiming Zhang, Yuxin Hu, Zhenyu Ning, Fengwei Zhang, Xiapu Luo, Haoyang
Huang, Shoumeng Yan, and Zhengyu He. 2023. SHELTER: Extending Arm CCA
with Isolation in User Space. In Proc. of USENIX Security.

https://frama-c.com
https://frama-c.com
https://frama-c.com/fc-plugins/impact.html
https://frama-c.com/fc-plugins/scope.html
https://frama-c.com/fc-plugins/scope.html
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://source.android.com/security/trusty
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://developer.arm.com/documentation/ddi0431/c/introduction/about-the-tzasc/features-of-the-tzasc
https://developer.arm.com/documentation/ddi0431/c/introduction/about-the-tzasc/features-of-the-tzasc
https://github.com/dlbeer/quirc
 https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
 https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
 https://mosquitto.org/
https://frama-c.com/fc-plugins/slicing.html
 https://github.com/DaveGamble/cJSON
 https://github.com/DaveGamble/cJSON
https://globalplatform.org
https://github.com/WiringPi/WiringPi
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://github.com/jacketizer/libnmea
 https://gist.github.com/browny/5211329
 https://gist.github.com/browny/5211329
https://www.op-tee.org
https://www.op-tee.org
https://www.openssl.org
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus
https://www.qualcomm.com/products/features/mobile-security-solutions
https://www.qualcomm.com/products/features/mobile-security-solutions
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://riscv.org/blog/2022/04/xuantie-virtualzone-risc-v-based-security-extensions-xuan-jian-alibaba/
https://riscv.org/blog/2022/04/xuantie-virtualzone-risc-v-based-security-extensions-xuan-jian-alibaba/
https://www.sqlite.org/index.html
https://sqlite.org/src/file/test/speedtest1.c
https://sqlite.org/src/file/test/speedtest1.c
 https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
 https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html

	Abstract
	1 Introduction
	2 Background
	2.1 Programming Model of TEE-based Apps
	2.2 Secure Peripheral Accessing of TEE Apps

	3 Related Work
	4 dTEE Usage
	4.1 Goals
	4.2 Threat Model
	4.3 Usage Example

	5 Design of dTEE
	5.1 Declarative Development Language
	5.2 dCFG-based Code Generation
	5.3 Peripheral-oriented Library Porting Mechanism

	6 System Implementation
	7 Evaluation
	7.1 Case Study
	7.2 Expressiveness and Lines of Code Reduction
	7.3 dTEE vs. WaTZ
	7.4 Overhead of dTEE
	7.5 Performance Optimization
	7.6 Discussion

	8 Conclusion
	Acknowledgments
	References

