

SimEnc A High-Performance Similarity-Preserving Encryption Approach for Deduplication of Encrypted Docker Images

Tong Sun¹, Bowen Jiang¹, Borui Li², Jiamei Lv¹, Yi Gao¹, and Wei Dong¹

¹The State Key Laboratory of Blockchain and Data Security,

College of Computer Science & School of Software Technology, Zhejiang University, China

²School of Computer Science and Engineering, Southeast University, China

Background

• Encrypted container images are becoming increasingly popular in registries for privacy

Encrypting images for content confidentiality in Container Registry

Last updated 2024-05-02

[ATC'23] AWS Lambda

aws

This paper is included in the Proceedings of the 2023 USENIX Annual Technical Conference. July 10-12, 2023 - Boston, MA, USA 9701-029132-35-9

2

Background

• Huge storage cost

Background

• 97% of Docker files across different layers are duplicated^[1]

[1] Large-scale Analysis of the Docker Hub Dataset. In Proc. of IEEE CLUSTER, 2019.

Background

• 97% of Docker files across different layers are duplicated^[1]

[1] La

[1] Large-scale Analysis of the Docker Hub Dataset. In Proc. of IEEE CLUSTER, 2019.

Challenge

Deduplication for encrypted images is difficult

- Deduplication exploits identical content
- Encryption makes all contents look random

Previous work

Previous work

Message-locked Encryption (MLE)

• generates encryption keys from the content

Previous work

- Message-locked Encryption (MLE)
 - generates encryption keys from the content

Observation #1

• Even minor modifications to the image content can hinder MLE deduplication

Observation #1

• Locality-sensitive hashing (LSH)-based MLE (SOTA)

Observation #1

• Locality-sensitive hashing (LSH)-based MLE (SOTA)

Observation #1

• Locality-sensitive hashing (LSH)-based MLE (SOTA)

Observation #1

• Locality-sensitive hashing (LSH)-based MLE

Observation #2

Deduplication stage

Two drawbacks

- Re-compression is needed to restore images, increasing pull latency
- Decompressing before deduplication reduces throughput

Observation #2

Deduplication stage

Observation #2

Deduplication stage

Observation #2

- Can Docker images be deduplicated after Huffman decoding instead of completely decompression (Huffman dec.+ LZ77 dec.)?
- If yes, it can potentially reduce pull latency.

Observation #2

• Can Docker images be deduplicated after Huffman decoding instead of completely decompression?

- **Observation #2**
- Deduplication results

After decompression, the layer exhibits data bloat, resulting in significantly larger duplicated bytes than in the partially decoded space.

Contributions

- We explore a new similarity space in Docker images by only using Huffman decoding
- We propose a fast similarity space selection mechanism that leverages the Huffman tree located at the header of each layer for similarity assessment.
- We propose a semantic-aware MLE technique, which is the first work to introduce semantic hashing in encrypted deduplication for improving the deduplication ratio.

SimEnc Design

Overview

SimEnc Design

• Overview

SimEnc Design

• Overview

SimEnc Design

Three modes

• balance the trade-off between deduplication ratio and pull latency

(I) Basic deduplication mode n (B-mode n)

- first n layers (layer-level deduplication),
- the remaining layers (chunk-level deduplication)

(2) High deduplication mode (H-mode)

• all layers (chunk-level deduplication)

(3) Flexible deduplication mode (F-mode)

• utilizes image similarity to select the similarity space for deduplication

Fast Similarity Space Selection

• F-mode

- rapidly determines the deduplication space
- Insight: exploit the Huffman tree similarity of each layer head

Fast Similarity Space Selection

Semantic-aware MLE

• We introduce the semantic hash technique

- Generate similar hash values for similar chunks
- Training stage

USENIX ATC 2024

EmNets@ZJU

Similarity-preserving Key Generation

- Semantic hashing is not directly applicable in MLE
- Inference Stage
 - Similarity-preserving key generation

- It is difficult to generate identical keys for similar chunks
- Our key idea is clustering semantic hashes to assign keys to the same class
 - e.g., using the representative chunk key of the class

- It is difficult to generate identical keys for similar chunks
- Our key idea is clustering semantic hashes to assign keys to the same class
 - e.g., using the representative block key of the class
- We choose the DBSCAN clustering algorithm

• is it possible to design an adaptive clustering to set hyperparameters automatically?

• Automatically select the distance ε

$$N_{\varepsilon}(p) = \{q \in D \mid distance(p,q) \leq \varepsilon\}$$

Automatically select the distance ε

$$N_{\varepsilon}(p) = \{q \in D \mid distance(p,q) \leq \varepsilon\}$$

- Our insight
 - utilize the LSH method to guide the measurement of semantic hash code distribution

Implementation

• We have implemented a prototype of SimEnc in Go and C/C++. Our code is open-sourced.

https://github.com/suntong30/SimEnc

- CNN architecture for training the semantic hash
 - e.g., eight conv layers for 512KiB chunks

- Platform
 - Three PCs, each equipped with a 20-core Intel i9-10900K CPU (@3.70 GHz), 128GB DDR4 DRAM, and a 4TB S690MQ SSD
 - 800Mbps Network
 - One GeForce RTX 3090 Ti for training and inference

- Baselines
 - [ATC'20] DupHunter, the state-of-the-art Docker registry for plaintext deduplication.
 - [ATC'23] AWS Lambda, the state-of-the-art serverless platform for encrypted Docker image deduplication using MLE.
 - Improved AWS Lambda, we integrate LSH-based MLE in AWS Lambda with Finesse^[1], to generate identical keys for similar chunks.

[1] Finesse: Fine-Grained Fea- ture Locality based Fast Resemblance Detection for Post-Deduplication Delta Compression. In *Proc. of USENIX FAST*, 2019.

• Datasets

Dataset/Workload	#Layer	#Unique Layer	Comp. size	Partially decoded size	Decomp. size
Ubuntu [24]	46	46	1.18 GiB	1.67 GiB	3.24 GiB
Couchbase [20]	516	263	17.74 GiB	35.85 GiB	41.29 GiB
IBM (Dal) [35]	2000	758	11.23 GiB	15.36 GiB	28.97 GiB
IBM (Fra) [35]	2000	700	10.77 GiB	14.57 GiB	27.88 GiB
IBM (Lon) [35]	2000	710	9.49 GiB	13.11GiB	25.11 GiB
IBM (Syd) [35]	2000	503	19.01 GiB	25.73 GiB	48.48 GiB
IBM (Random) [35]	13619	7521	263.13 GiB	318.8GiB	643.95 GiB

Evaluation

Deduplication ratio

SimEnc achieves an average deduplication ratio that is **38.6%** higher than the **LSH**based MLE and **109.2%** higher on average compared to the MLE

Evaluation

Deduplication ratio

SimEnc achieves an average deduplication ratio that is **38.6%** higher than the **LSH- based MLE** and **109.2%** higher on average compared to the **MLE**

• Comparison with DupHunter (IBM Fra)

High deduplication mode (H-mode)							
Docker Registry	Deduplication ratio	Latency (s)					
DupHunter [83]	1.866	0.285					
SimEnc (Ours)	2.710 45.2 %	6 0.206 27	.7%				
Flexible mode (F-mode)							
Docker Registry	Deduplication ratio	Latency (s)					
DupHunter [83]	1.45	0.124					
SimEnc with DupHunter'selective method	1.49	0.117					
SimEnc (Ours)	2.70	0.133					

• Comparison with DupHunter

High deduplication mode (H-mode)						
Docker Registry	Deduplication ratio	Latency (s)				
DupHunter [83]	1.866	0.285				
SimEnc (Ours)	2.710	0.206				
Flexible mode (F-mode)						
Docker Registry	Deduplication ratio	Latency (s)				
DupHunter [83]	1.45	0.124				
SimEnc with DupHunter'selective method	1.49	0.117				
SimEnc (Ours)	2.70 86.2 %	0.133				

• Pull latency

Evaluation

• Pull latency

Evaluation

Comparison of end-to-end latency with AWS Lambda

Deduplication throughput

- Partially decoding: 135MB/s
- Semantic hash: 16.8MB/s (One GPU) Bottleneck

SimEnc

A High-Performance **Sim**ilarity-Preserving **Enc**ryption Approach for Deduplication of Encrypted Docker Images

- Partial decoding
- Fast similarity space selection
- semantic-MLE

Thank you for your attention!

Tong Sun, Bowen Jiang, Borui Li, Jiamei Lv, Yi Gao, and Wei Dong

If you have any questions, please contact **tongsun@zju.edu.cn**

