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Abstract
Encrypted Docker images are becoming increasingly popu-
lar in Docker registries for privacy. As the Docker registry
is tasked with managing an increasing number of images, it
becomes essential to implement deduplication to conserve
storage space. However, deduplication for encrypted images
is difficult because deduplication exploits identical content,
while encryption tries to make all contents look random. Ex-
isting state-of-the-art works try to decompress images and
perform message-locked encryption (MLE) to deduplicate
encrypted images. Unfortunately, our measurements uncover
two limitations in current works: (i) even minor modifica-
tions to the image content can hinder MLE deduplication, (ii)
decompressing image layers would increase the size of the
storage for duplicate data, and significantly compromise user
pull latency and deduplication throughput.

In this paper, we propose SimEnc, a high-performance
similarity-preserving encryption approach for deduplication
of encrypted Docker images. SimEnc is the first work that
integrates the semantic hash technique into MLE to extract
semantic information among layers for improving the dedupli-
cation ratio. SimEnc builds on a fast similarity space selection
mechanism for flexibility. Unlike existing works completely
decompressing the layer, we explore a new similarity space
by Huffman decoding that achieves a better deduplication
ratio and performance. Experiments show that SimEnc out-
performs both the state-of-the-art encrypted serverless plat-
form and plaintext Docker registry, reducing storage consump-
tion by up to 261.7% and 54.2%, respectively. Meanwhile,
SimEnc can surpass them in terms of pull latency.

1 Introduction

Encrypted Docker images are becoming increasingly popular
in Docker registries for privacy [13, 19, 29]. This popularity
stems from their ability to restrict access to predetermined re-
cipients. For example, IBM Cloud [36] and AWS Lambda [6]
have implemented Advanced Encryption Standard (AES) [64]

Table 1: Comparison of SimEnc with related work
Works Flexibility Security

Deduplication
ratio Latency

DupHunter [83] Medium Low Medium (plaintext) Low
AWS Lambda [12] Low High Medium (cyphertext) High

SimEnc (Ours) High High High (cyphertext) Low

technology to encrypt Docker images. These images are com-
posed of a set of compressed layers, each layer containing the
executable of an application along with its complete depen-
dency set [33]. Although unauthorized users might be able
to see that encrypted images exist, they are unable to execute
them or view any confidential content [19].

As the Docker market continues to expand, Docker reg-
istries are required to manage an increasing number of im-
ages. For example, as of fall 2020, Docker Hub [21] hosted
hundreds of million images, which occupied more than 7
petabytes of storage space [56, 69]. A recent analysis of the
Docker Hub dataset revealed that about 97% of files across
different layers are duplicated [84], highlighting the essential
need for deduplication to save space.

However, deduplication for encrypted images is difficult be-
cause deduplication exploits identical content, while encryp-
tion tries to make all contents look random [70]. To overcome
this challenge, AWS Lambda [12] employs message-locked
encryption (MLE) technology [3, 12, 17, 25, 27, 47, 49, 63, 74,
79]. It first decompresses the Docker image and then divides
it into fixed-size chunks, with each chunk’s SHA256 hash
value computed to serve as a unique key. These keys are used
to encrypt the chunks using AES [64] encryption. Such a pro-
cess ensures that identical chunks of files produce identical
ciphertext, thereby improving the deduplication ratio1.

Unfortunately, our measurements (cf. §3) uncover two lim-
itations in current state-of-the-art approaches [12, 83]. These
approaches decompress Docker images before applying MLE
for deduplication.

Limitation I. Even minor modifications to the image
content can hinder MLE deduplication, as they change the

1We define the deduplication ratio = original data-set size
data-set size after deduplication , which is

calculated against the case when all layers are compressed [83].



SHA256 hash value of the generated key. The state-of-the-art
MLE technique [27, 47, 73, 74] employs locality-sensitive
hashing (LSH) [11, 37, 81] to generate identical keys for sim-
ilar chunks. LSH functions generate similar data signatures
for data blocks with similar bit patterns, which is called data
sketching [68]. This LSH-based MLE approach derives a
chunk’s key from its sketch and segments the chunks into
smaller sub-chunks. Consequently, identical sub-chunks from
similar chunks encrypted with the same sketch can be dedu-
plicated, improving the deduplication ratio. However, a recent
study [61] shows that the state-of-the-art LSH technique [81]
produces high false negative rates that generate different
sketches for similar data blocks. In our analysis (cf. §3.1),
we observe that 49.2% of similar data pairs in our Docker
dataset resulted in different sketches. Consequently, the high
false-negative rate in LSH-based MLE hinders the genera-
tion of identical keys for similar blocks, undermining storage
deduplication.

Limitation II. Although decompression restores the sim-
ilarity of file contents, it leads to an increase in stor-
age consumption after deduplication. We identify existing
works [12, 83] for Docker image deduplication operating in
the decompressed similarity space, which completely decom-
presses (i.e., LZ77 decoding and Huffman decoding [26]) lay-
ers in the image for deduplication. We also define the space
where compressed bytes are located as compressed similarity
space. We conduct encrypted deduplication using LSH-based
MLE on the 264GiB Docker image of IBM datasets [35]. The
result shows that although it could deduplicate 357GiB of
data after decompression, the system still required storage
of 283GiB of duplicates. Furthermore, we note that dupli-
cates cannot be compressed before encryption (for security
reasons [14, 42, 79]) and after encryption as encrypted data
are with high entropy [79]. Meanwhile, decompressing im-
ages before deduplication leads to two consequences: (i) as
the view of clients, the image requires re-compression during
restoration, increasing the client’s pull latency [83]; (ii) as
the view of service providers, in our measurements, it results
in a 67% reduction in deduplication throughput compared
to non-decompression. The state-of-the-art flexible Docker
registry, DupHunter [83], employs selective decompression of
statistically popular layers to reduce client pull latency. How-
ever, this strategy compromises the deduplication ratio since
the popular layers [33] would not be selected to decompress
before deduplication.

In this paper, we propose SimEnc, a high-performance
similarity-preserving encryption approach for deduplication
of encrypted Docker images. We summarize our contributions
as follows:

• We explore a new similarity space in Docker images by only
using Huffman decoding, which we term as the partially
decoded space. We first measure it as a new trade-off space
of deduplication ratio and latency better than the existing
completely decompressed space.

• We propose a fast similarity space selection mechanism that
leverages the Huffman tree located at the header of each
layer for similarity assessment. To balance the trade-off
between deduplication ratio and throughput, we partially
decode layers that are highly similar for block-level dedu-
plication, whereas others undergo deduplication solely at
the layer granularity.

• We propose a semantic-aware MLE technique, which is the
first work to introduce semantic hashing in encrypted dedu-
plication for improving the deduplication ratio. First, we
exploit semantic-preserving learning to preserve the seman-
tic information and utilize hashing contrastive learning to
extract discriminative representations in partially decoded
space. Second, we propose a similarity-preserving key gen-
eration mechanism to overcome the inability of semantic
hashing to generate an identical sketch for similar chunks
that could not be duplicated after encryption.
We evaluate SimEnc on a 3-node cluster using real-world

workloads and datasets. Table 1 illustrates the comparison
of SimEnc with related work in terms of flexibility, security,
deduplication ratio, and latency. In the highest deduplica-
tion mode, SimEnc outperforms both the state-of-the-art en-
crypted serverless platform (AWS Lambda [12]) and plaintext
Docker registry (DupHunter [83]), reducing storage consump-
tion by up to 261.7% and 54.2%, respectively. SimEnc also
surpasses DupHunter in pull latency reduction (up to 27.7%)
and can outperform AWS Lambda in end-to-end latency un-
der low bandwidth conditions (below 50MB/s). In flexible
mode, SimEnc further reduces storage consumption by 86.2%
compared to DupHunter, with only a 7.3% increase in pull
latency overhead, which is practically unnoticeable to clients.
Moreover, SimEnc is compatible with DupHunter’s flexible
mode and supports various other deduplication modes, of-
fering diverse performance and storage savings trade-offs.
Additionally, SimEnc can be seamlessly integrated into exist-
ing Docker registries and serverless platforms.

2 Background and Related Work

2.1 Encrypted Deduplication
Deduplication in plaintext is straightforward, but encryption,
which randomizes content, complicates the process [70]. The
message-locked encryption (MLE) [3,12,17,25,27,47,49,63,
74, 79] is a cryptographic method designed to enable dedu-
plication of encrypted data by generating encryption keys
from the content of the messages themselves. A representa-
tive implementation of MLE is convergent encryption [3, 25],
which uses the hash value (e.g., SHA256) of a message as the
MLE key. AWS Lambda [12] deploys this MLE approach to
deduplicate encrypted Docker images after decompression.

The state-of-the-art MLE technique is the locality sensitive
hash (LSH)-based MLE [27, 47, 49, 74]. It employs LSH to
generate chunk sketches, which we call super features [68].
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Figure 1: Existing Docker registry for encrypted Docker im-
age deduplication.

LSH-based MLE computes the hash value Hi(Wj) for each
sliding window Wj, where j denotes the starting byte position
of the window, and i is the feature number. The extracted fea-
tures are calculated by the maximal hash value Max(Hi(Wj)).
Then, it constructs super-features (SFs) by transposing n fea-
tures [81]. Minor modifications in a chunk’s contents can alter
its SHA256 value, leading to a different key generation of
the MLE. However, LSH-based MLE uses SFs of the chunk
to extract chunk features, which tolerates these minor mod-
ifications [81], allowing for the generation of the same key.
However, encrypting similar chunks using the same key leads
to distinct encrypted chunks. To address this, existing works
utilize the Content-Defined Chunking (CDC) [57, 76] tech-
nique to generate variable-length sub-chunks, and encrypt
them with the same key. CDC employs a sliding window to
compute a hash value (e.g., Rabin’s fingerprint) of the data
contained in the window. When the hash value satisfies the
pre-defined condition, CDC determines the chunk boundaries,
creating variable-size chunks based on the data.

2.2 Docker Registry

Docker registries are primarily focused on storing and dis-
tributing Docker images. A registry provides a RESTful
API [7] for Docker clients to push images to and pull im-
ages from the registry [22, 23]. Docker registries organize
images into repositories, where each repository holds dif-
ferent versions or tags of an identical image, denoted as
repo-name:tag. In these repositories, the registry maintains
a manifest for each tagged image. Each layer, a compressed
archive file, is uniquely identified by a SHA256 digest calcu-
lated from its uncompressed form. When retrieving an image,
the Docker client initially fetches the manifest, followed by
the requisite layers not already on the client. Figure 1 shows a
typical Docker registry [36] which contains encrypted images.
In the client push mode, upon receiving a layer, the Docker
registry decompresses it and divides it into fixed-size chunks.
For example, the chunk size in AWS Lambda is 512 KiB [12].
These chunks are then subject to encrypted deduplication
using MLE. Conversely, in client pull mode, the encrypted
chunks must first be decrypted and then concatenated with
others to form an archived layer. Subsequently, this archived
layer is re-compressed prior to being transferred to the client.

The performance of registries is vital for Docker clients, es-

pecially regarding the efficiency of layer retrieval (i.e., pull
layer latency) [33, 83]. This aspect notably influences the
time it takes to start a container [33]. DupHunter [83] is the
state-of-the-art Docker registry that can balance the trade-off
between deduplication ratio and pull latency. It selectively
decompresses layers based on popularity before deduplica-
tion, leaving frequently accessed layers still compressed.

2.3 Deflate Algorithm
Each layer of Docker images is archived using the tar and
then compressed with the gzip2 [26], which utilizes the de-
flate lossless compression algorithm. The deflate algorithm
is a combination of LZ77 encoding and Huffman encod-
ing [18, 28]. LZ77 is a dictionary-based compression tech-
nique [85]. It reduces the data size by finding repeated se-
quences of strings and replacing them with references to pre-
vious occurrences of the same sequence. These references
consist of two parts: a distance (how far back from the current
position) and a length of the repeated sequence. The Huffman
encoding [34] constructs an optimal prefix code tree based
on the frequency of occurrence of characters. Each deflate
stream has a compressed block (length and distance codes)
which is a 286-dimension vector of Huffman tree [18]. The
inflate algorithm [60] can flatten deflate streams by Huffman
decoding and LZ77 decoding.

3 Motivating Observations

The need and feasibility of SimEnc are based on two key
observations: (i) existing MLE approaches tend to be highly
sensitive to small changes in input (high perturbation), which
results in a low deduplication ratio; (ii) a partially decoded
space exists in Docker images where we can achieve a higher
deduplication ratio and lower latency compared to the existing
decompressed space.

3.1 Limitations of Existing Encrypted Dedu-
plication Works

We now describe high-level ideas of MLE, the state-of-the-art
LSH-based MLE, and the ideal encrypted deduplication. The
deduplication approach is aligned with the AWS Lambda con-
figuration, which divides layers into fixed-size chunks [12].
In Figure 2(a), we make two observations: (i) it is difficult to
obtain benefit from deduplicating two similar chunks in the
compressed space because compression destroys the similar-
ity [55]; (ii) the MLE employed in AWS Lambda [12] utilizes
SHA256 hashes as keys. While decompression reveals more
similarities, minor content changes hinder deduplication.

2To the best of our knowledge, official Docker Hub images are compressed
using gzip. While zstd compression is now available for Docker images,
the key idea of SimEnc is not tied to any specific compression tool.
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Figure 2: The gap between existing message-locked encryption (MLE) works and the ideal.

Figure 2(b) shows the LSH-based MLE performance in
data deduplication. Chunk A produces features (f1 and f2) to
calculate super feature (SF) and is divided into sub-chunks to
address the shift boundary problem [74]. Chunk A′ follows the
same steps, but the feature is compromised by delta bytes. It
creates a different SF from Chunk A, preventing deduplication.
Although plaintexts of sub-chunks (A1 and Â1, A3 and Â3) are
identical, the keys derived from SFs are distinct. To quantify
such occurrences, we analyze 108,637 128KiB data blocks
from real datasets (cf. §6). Compared to brute-force methods
(e.g., using Xdelta [40] for chunk similarity calculations), we
observe that 49.15% of chunk pairs showed over 50% byte-
level similarity3, yet their sketches significantly differed.

To the best of our knowledge, generating identical keys for
similar chunks is difficult. The state-of-the-art approach to
extract data features is semantic hash [45, 61, 72, 77], which
can map infinite data into finite hash codes while preserving
the semantic distance. It is widely used in image retrieval and
recommendation systems. The ideal encrypted deduplication
is shown in Figure 2(c). Ideally, only the semantic hash codes
of similar chunks are identical, all identical sub-chunks could
be deduplicated after encryption. However, semantic hashing,
while capable of generating similar hashes for similar blocks
of data, is not suitable for direct encrypted deduplication.

3.2 A New Similarity Space in Docker Images

Decompressing Docker image layers before deduplication en-
hances similarity detection and deduplication ratios. However,
this process has two drawbacks: (i) re-compression is needed
to restore images to their original forms, increasing pull la-
tency, and (ii) decompressing before deduplication reduces
system throughput.

Pull latency. To further investigate, we break down the
pull latency, which includes downloading and restoring time.
Restoring involves fetching chunks and re-compressing using
gzip, comprising LZ77 and Huffman encoding. We exclude
the fetching time because it is trivial. We perform deduplica-
tion on two consecutive versions of the Ubuntu image after
decompression. As Figure 3(a) illustrates, LZ77 encoding

3We define the byte-level similarity as delta size after delta compression
original size .
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Figure 3: (a) Comparison of two similarity spaces w.r.t. la-
tency. (b) Encrypted deduplication ratio w.r.t. block size in
partially decoded and decompressed spaces.

dominates re-compression time during new version pulls. This
raises the question: Can Docker images be deduplicated af-
ter Huffman decoding instead of completely decompression?
Such a method could enable image restoration solely through
Huffman encoding, thereby potentially reducing pull latency.

To answer the above question, we partially decode the
Docker images using Huffman decode, then deduplicate
them after dividing into fixed-size chunks. We assess this
method’s deduplication ratio against the complete decom-
pression method (including LZ77 and Huffman decoding).
Our experiments involve 46 official Ubuntu image versions,
totaling 849,347 4KiB blocks in completely decompressed
space. Figure 3(b) presents two counter-intuitive results: (i)
the state-of-the-art LSH-based MLE technique, particularly
using Finesse [81] for block sketch generation, yields a higher
deduplication ratio in partially decoded space than in com-
pletely decompressed space; (ii) MLE as implemented in
AWS Lambda [12] achieves a deduplication ratio over 1 only
in completely decompressed space with 4KiB chunking.

We conduct a detailed analysis of deduplication between
two continuous Ubuntu images (ubuntu:focal-20230605
and ubuntu:focal-20230624), using the older version’s
blocks as the base. The results in Figure 4 yield two obser-
vations: (i) in the partially decoded space, the layer exhibits
more delta bytes compared to the decompressed space; (ii)
after decompression, the layer exhibits data bloat, resulting
in significantly larger duplicated bytes than in the partially
decoded space. Although these duplicated bytes can be re-
moved by deduplicating, storing a duplicate is still necessary.
This elucidates the two counter-intuitive findings presented
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in Figure 3(b): (i) the LSH-based MLE achieves a higher
deduplication ratio in the partially decoded space, and (ii) the
MLE method is more effective in identifying identical parts
at smaller block granularities, as blocks with minor modifica-
tions are not amenable to deduplication.

Deduplication throughput. The system faces a trade-off
between the deduplication ratio and throughput. Deduplicat-
ing all layers in the decompressed space at block granularity
maximizes the deduplication ratio but decreases throughput.
In contrast, deduplicating at layer granularity in the com-
pressed space enhances throughput but lowers the deduplica-
tion ratio. Meanwhile, the pull latency also be compromised.

Previous work [83] has focused on reducing latency by
selectively decompressing infrequently accessed layers, at the
cost of storage space. For example, DupHunter’s selective
mode achieves a deduplication ratio of 1.3, while dedupli-
cation after decompressing all layers reaches 6.9 [83]. We
present a service provider’s perspective on whether selec-
tive partial decoding of layers based on similarity is feasible.
Layers with substantial similarity can be partial decoding
followed by deduplication. Conversely, layers with lesser sim-
ilarity are more suitable for layer-level deduplication. This
adaptable approach aims to balance reduced latency, with
improved throughput and storage savings.

4 SimEnc Design

In this section, we first provide an overview of SimEnc (§4.1).
We then describe in detail how it pre-precesses layers by
selecting similarity spaces (§4.2), and how it deduplicates
layers by our novel semantic-aware MLE approach (§4.3).
Finally, we discuss the SimEnc (§4.4).

4.1 Overview
We propose SimEnc, a high-performance similarity-
preserving encryption approach for encrypted Docker image
deduplication.

4.1.1 System Architecture

Figure 5 shows the architecture of SimEnc, which consists
of two main components: (1) two storage clusters responsi-
ble for storing images and pushing layers to clients; and (2)
management clusters, which maintain distributed metadata
and a key database, and rapidly detect the similarity between
clients’ pushed layers and existing stored layers.

Management server. The management server serves three
main functions: (i) it produces keys for the deduplication
process, creating them for the layer deduplication cluster at
the layer level and the chunk deduplication cluster at the block
level, using the key generation mechanism (cf. §4.3.2); (ii)
it manages and stores the keys in the database; and (iii) it
deploys our fast similarity space selection mechanism (cf.
§4.2) for rapidly detecting layer similarity.

Storage cluster. SimEnc provides two storage clusters
to achieve high-performance deduplication. The first cluster
is the layer deduplication cluster (LD-cluster) which dedu-
plicates compressed layers at layer granularity. The second
cluster is the chunk deduplication cluster (CD-cluster) which
contains the unique encrypted chunks in the partially decoded
space. It exploits our partial decoding technique to find more
identical chunks in the compressed layers and employs par-
tial encoding to restore the original compressed layers. It
utilizes our semantic-aware MLE (cf. §4.3) deduplication.
SimEnc integrates the prefetch and preconstruct techniques
of DupHunter [83] to reduce pull latency.

SimEnc offers three modes to balance the trade-off between
deduplication ratio and latency in user pull requests. (1) Ba-
sic deduplication mode n (B-mode n). For an image with M
layers, it performs layer-level encrypted deduplication on the
first n layers, using the basic MLE [12]. The remaining M−n
layers undergo chunk-level deduplication using our semantic-
aware MLE after partial decoding. (2) High deduplication
mode (H-mode), which deduplicates all layers at chunk level
after partial decoding. This process exposes more similarities.
(3) Flexible deduplication mode (F-mode), utilizes Docker im-
age similarity to select the similarity space for deduplication,
balancing deduplication ratio and throughput (cf. §4.2).

4.1.2 Workflow

Figure 6 illustrates the workflow of SimEnc, featuring two key
mechanisms. The fast similarity space selection (§4.2) decides
the space—compressed or partially decoded—for encrypted
deduplication of each layer. Layers in compressed space un-
dergo basic MLE, while those needing partial decoding are
fixed-size chunked for processing with Semantic-aware MLE



Fast Similarity Space Selection (Sec. 4.2)

Layer

100

40 60

25B(25)

0

0

110

0 1

1

C(15) A(35)

E(10) D(15)

Huffman Tree

extract
Bloom 
Filter

hashing

Layer-level 
deduplication

miss

Semantic-aware MLE (Sec. 4.3)

CDC

hit
Layer

A. Training (Sec. 4.3.1)

B. Inference

Layer
chunks
a b

…

Pseudo-label

Chunk/Label a b c …
a 1 -1 1 …
b -1 1 -1 …
c 1 -1 1 …
… … … … …

L-bit semantic 
hash code

Hash network training

Semantic hash
[0, 1, 0, 0, …] Chunk-level 

deduplication

Similarity-preserving 
Key Generation

(Sec. 4.3.2)

Decompression Message-locked Encryption (MLE) Chunk-level deduplication

(a) Traditional approach [12]

Layer

(b) SimEnc (Ours)
Chunking

Layer

Partial decoding

sub-chunks

Figure 6: SimEnc workflow.

0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

1.3

1.4

1.5

1.6

D
ed

up
lic

at
io

n 
ra

tio
H

ig
he

r i
s 

be
tte

r ▶

Figure 7: Dedup. ratio
w.r.t. the cosine simi-
larity of pair-wise Huff-
man trees.

0.00 0.05 0.10 0.15
Average hamming distance

0.00

0.25

0.50

0.75

1.00

C
D

F

0
2500
5000
7500
10000
12500

# 
of

 c
hu

nk
s

Figure 8: Statistics of average se-
mantic hash Hamming distance
with the same super feature blocks.

(§4.3), creating identical hashes for similar blocks. This pro-
cess enables encrypted deduplication of identical sub-blocks
within similar blocks using the same keys.

Fast similarity space selection (§4.2). In F-mode, when
the management server receives a new Docker layer, it rapidly
determines the deduplication space using Huffman tree sim-
ilarities. If a similar layer has been partially decoded and
deduplicated in the CD-cluster, the new layer is processed
there to identify more identical chunks. Otherwise, it’s stored
in the LD-cluster.

Semantic-aware MLE (§4.3). This process involves two
stages: chunk similarity extraction (§4.3.1) and similarity pre-
serving key generation (§4.3.2). Layers are partially decoded
and then chunked. For similarity extraction, we use a Hash
network to extract semantics from Docker layers, enhancing
semantic information through semantic-preserving and simi-
larity contrastive learning. After semantic hash computation,
a novel method for similarity-preserving key generation is
employed.

4.2 Fast Similarity Space Selection

In F-mode, when a Docker layer is uploaded by a client,
SimEnc determines the most suitable space for deduplication.
Layer-level deduplication occurs in the compressed space,
while Huffman decoding is required for chunk-level dedupli-
cation in the partially decoded space. We utilize the Huffman
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tree in each Docker layer’s header to assess layer similarity,
as it provides key statistical information about the encoding
of compressed content.

A Docker image’s Huffman tree is a 286-dimension vector,
including 256 ASCII encoding lengths and other data (cf.
§2.3). Our intuition is that layers with greater similarity will
have more closely aligned Huffman tree statistics. To test
this, we evaluate the cosine similarity of Huffman trees across
123,442 layer pairs. The results, shown in Figure 7 with 95%
confidence intervals, reveal a positive logarithmic correlation
between the deduplication ratio of paired chunks and the
cosine similarity of their Huffman trees.

However, the practicality of comparing each layer’s Huff-
man tree in a real-world system poses significant spatial and
temporal challenges. We measure that it takes around 5s to
compare the cosine similarity of a new layer to the Huffman
tree of 10,000 layers stored in the system, which is unaccept-
able in a high throughput system. Consequently, devising an
expedited, efficient method for similarity detection in Docker
layers becomes imperative.

To address this challenge, we employ the Bloom filter [8,
9], a compact bit-vector structures representing element sets,
allowing for false positives but guaranteeing that unmarked
elements are absent. This system maps Huffman trees into bit
vectors for rapid comparison.

As depicted in Figure 9, the Bloom filter’s bit array size
(e.g., 32 bits), is set during system warm-up or update. A



larger bit array is preferred for lower latency, minimizing
false positives and unnecessary deduplication in partially de-
coded spaces. Conversely, a smaller bit array size increases
the likelihood of mapping similar Huffman trees to identical
values, improving deduplication after partial decoding. Af-
ter initialization, the 286-dimension Huffman tree is mapped
onto the Bloom filter using multiple hash functions (e.g., Jenk-
ins’hash [10, 38] and Rabin [62]). Layers are deduplicated
at the layer level if their hashes are absent in the Bloom fil-
ter; if present, they undergo partial decoding for chunk-level
deduplication using Huffman decoding.

4.3 Semantic-aware MLE

The above similarity space selection is the pre-processing
of deduplication, we now describe our novel semantic-aware
MLE approach for encrypted deduplication. To capture the
inherent semantic similarities between Docker layers, we in-
troduce semantic hash [45, 61, 72, 77] into MLE. However,
applying semantic hash into MLE is non-trivial. To better un-
derstand the problem, we first identify two unique challenges
in the context of our scenario as follows.

(C1.) Semantic extraction. Direct application of the se-
mantic hashing technique often leads to biased outcomes, as
seen in Figure 16(a), where semantic hashes are unevenly
distributed across the hash space. Consequently, training a
semantic hash model to achieve uniform data mapping in the
hash space presents a significant challenge.

(C2.) Generation identical sketches. While an ideal
semantic hashing model is capable of producing similar
sketches or hashes for akin data chunks, the MLE frame-
work necessitates identical hashes for similar chunks to enable
the encryption of duplicate chunks into identical ciphertexts.
However, it is challenging to generate an identical hashed
among similar data chunks.

4.3.1 Chunk Semantic Extraction

Pseudo-label generation. Recent works show that features
extracted from pre-trained deep neural networks contain rich
semantic information [30]. However, the extraction of se-
mantic information from image layers remains the following
issues: (i) to the best of our knowledge, there does not exist a
pre-trained model specifically for Docker images to identify
semantics; (ii) Docker images contain various types of files
(e.g., text, binary files, etc.), each with distinct features that
are hard to extract and justified similarities. Therefore, our
work initially focuses on obtaining the similarity of different
file blocks and labeling them correspondingly for training.

In contrast to the conventional cosine distance approach
for measuring similarity [72, 77], which often results in high
false positive and negative rates at the boundaries of similar
chunk clusters [45], our focus is on byte-level rather than
semantic-level deduplication. To this end, we first apply ran-

dom augmentations (i.e., modification with random bytes)
to chunks in the partially decoded space. Then, we measure
byte-level similarity using the compression ratio metric post
delta compression [2, 39, 40, 71, 75]. This addresses the se-
mantic boundary issue by estimating the distance between
pairs of blocks through similar block distribution divergence,
formulated as [52]:
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delta compression tools on blocks.
After calculating the distribution distance, we can filter

the similar blocks with a specific threshold and generate the
pseudo-label for pair-wise blocks which can be constructed
as:

S jk =

{
1 if D jk ≤ t
−1 if D jk > t

where t is the threshold of distribution distance. We default
set the t to 2. If the pair is similar, the pseudo-label will be 1;
If the pair is dissimilar, the pseudo-label will be -1.

Hash learning network. We follow the existing works to
train the hash network for mapping fixed file blocks into fixed
length (e.g., 128-bit) hash values. Our deep hash network is
based on a convolutional neural network (CNN) architecture
followed by a fully-collected layer with L hidden units. The
depth of the CNN is determined by the block size of the
input. We believe that the larger the block size, the deeper
the architecture needs to be constructed to extract the rich
semantic features inside the block.

Semantic-preserving learning. The goal of the hash learn-
ing network is to map similar blocks into similar hash outputs.
We first define the hash similarity function using Hamming
distance [58], given by:

Ŝ jk =
1
L

hT
j hk, h j = sgn(F(b j;ω)), (1)

where F(b j;ω) is L dimension output of our input block data
b j, ω is the learnable parameters of the network, h j is the
corresponding hash codes, sgn(·) is the sign function, and
h j ∈ {−1,1}L. If a pair of hash codes is similar, the hash
similarity function will return a value near 1; If a pair of hash
codes is dissimilar, the function will return a value near -1.
Then, we design a loss function to minimize the difference
between predictive similarity label Ŝ jk and the pseudo-label



S jk of pair-wise blocks, given by:

minL(ω) =
1
n2

n

∑
j=1

n

∑
k=1

∥∥∥∥S jk−
1
L

hT
j hk

∥∥∥∥2

2
(2)

Similarity contrastive learning. As we observed in §3.1,
existing methods are not efficient at preserving the original
similarity of the data. Thus, our insight is that encourage the
generation of similar hashes for highly similar chunks and
discourage it for less similar ones. To achieve this, we design
a contrastive learning loss as follows:

minL(ω) = α ·Lsim +(1−α) ·Ldissim (3)

where Lsim and Ldissim are the hash learning loss for similar
blocks and dissimilar blocks, respectively, and α is a temper-
ature parameter set to 0.5 as indicated in [15].

4.3.2 Similarity-preserving Key Generation

Semantic hashing is not directly applicable in MLE because
it produces similar but not identical hash codes for similar
chunks. However, encrypted deduplication requires identical
hash codes to serve as or derive the encryption key.

The similarity-preserving key generation in our system
leverages clustering, which organizes objects into groups
where intra-group relations are closer than those between
different groups. Our key idea involves clustering semantic
hashes to assign keys to the same class, such as using the repre-
sentative block key of that class. Unlike other clustering meth-
ods like K-means [53], BIRCH [80], and EM-Clustering [78],
DBSCAN [66] has several exceptional features in our sce-
nario: (i) it forms clusters of arbitrary shapes, doesn’t necessi-
tate predefined cluster numbers, and (ii) it remains unaffected
by the data input order.

In light of this situation, we ask: is it possible to design
an adaptive clustering to set hyperparameters automatically?
If we can, the clustering algorithm can be applied to arbi-
trary semantic attributes of Docker images as it automatically
can extract suitable parameters from a large amount of data.
DBSCAN’s definition of clusters is based on two parame-
ters: ε and MinPts. For a point p, the ε-neighborhood of p
is the set of all the points around p within distance ε. The
ε-neighborhood is formulated as:

Nε(p) = {q ∈ D | distance(p,q)≤ ε} (4)

If the number of points in the ε-neighborhood of ε is no
smaller than MinPts, then all the points in this set, together
with p, belong to the same cluster.

To address this issue, our insight is utilizing the LSH
method (cf. §3.1) to guide the measurement of semantic hash
code distribution, further to adaptive determine hyperparam-
eters. Our intuition is that if the LSH (cf. §2.1) computes
identical features for two data blocks, there is a high prob-
ability that they are similar blocks. Hence, we can use the

Algorithm 1: Similarity-preserving Clustering
Input :N file chunks, Semantic hash codes SH[0, ...,N−1]

of N chunks
Output :Cluster categories C [0, ...,N−1] for N chunks

1 FeatureMap←{}, HammingDistances←{} ▷ Initialization
2 for m = 0 to N−1 do
3 Feature[m]← LSH(chunk[m]) ▷ Obtain features
4 FeatureMap[Feature[m]]← FeatureMap[Feature[m]] ∪

{m} ▷ Update maps

5 for feature in keys(FeatureMap) do
6 if len(FeatureMap[feature]) > 1 then
7 TotalDistance← 0, PairCount← 0
8 for pair in all pairs of FeatureMap[feature] do
9 TotalDistance← TotalDistance +

HammingDistance(SH[pair[0]], SH[pair[1]])
10 PairCount← PairCount + 1

11 HammingDistances[feature]← TotalDistance /
PairCount ▷ Average distance

12 ε← 90th percentile of values in HammingDistances
13 C ← DBSCAN(eps=ε) ▷ Execute DBSCAN clustering

feature distribution obtained from identical blocks by LSH to
assess the distribution of semantic hash codes derived through
semantic hashing.

We propose a similarity-preserving clustering algorithm
(Algorithm 1). After computing semantic hashes, we deter-
mine the Hamming distances between all file chunk pairs,
forming an N×N matrix for N chunks. Then, we apply LSH
to each block to identify representative features, grouping
blocks with matching features. We calculate the average Ham-
ming distance within each group.

Figure 8 shows this process’s results for 50 Couchbase [20]
image versions. Our observations include: (i) over 75% of
block sets with the same feature are identical (zero Hamming
distance); (ii) there is a long-tail effect in the CDF distribution.
Hence, we set the ε value at the 90th percentile of the CDF,
adjusting it adaptively for different Docker images. This ε

hyperparameter, along with the Hamming distance matrix, is
input into DBSCAN for final clustering of file blocks.

During system warm-up or updates, the management server
aggregates users’ chunk semantic hashes, assigning a key to
each category (derived from the representative semantic hash).
New uploaded blocks are compared to each category’s cen-
troid at online. A block is added to a category if its distance
is below a preset threshold, receiving the cluster’s key. Oth-
erwise, it forms a new cluster. Increasing the threshold for
layers needing strong privacy leads to more distinct classes.
After key assignment, chunks are divided into sub-blocks via
CDC, encrypted with the key, and then deduplicated by the
system.



4.4 Discussion

Security. SimEnc presents a varient MLE technique for en-
crypted deduplication. Despite existing studies indicating
vulnerability of MLE to brute-force attacks [41], frequency
analysis attacks [46, 48], and side-channel attacks [31, 32], it
can be defensed against by server-aided MLE [41], proof-of-
ownership [31, 47], and server-side deduplication [47, 50, 63],
respectively. A practical strategy in AWS Lambda is to miti-
gate this risk involves varying the salt in the key derivation pro-
cess [12]. By changing the salt value across different regions
and times, the resultant ciphertext also varies. SimEnc can
integrate the above methods to enhance security.

Although SimEnc can achieve the same security as AWS
Lambda, we still propose a metric score to measure security
(# of keys in the system) versus disk savings, as given:

Benefit Score = (Deduplication ratio−1)/(# of keys)
1
α , (5)

where α ∈ (0,1] is a hyperparameter to regulate whether the
system prefers storage saving or security. If α closer to 0,
the system prefer a higher deduplication ratio; If α = 1, the
system only concerns security.

Privacy. SimEnc’s key generation process maintains user
privacy as it involves comparing semantic hashes from dif-
ferent users on the management server. Due to the inherent
properties of hash mapping, a hash code on its own is meaning-
less and cannot be used to reconstruct the original input [45],
thereby safeguarding user data. The implementation of CDC
and encryption is carried out separately within each user’s
space, thereby ensuring that privacy is not compromised.

Encryption procedure. The current encryption process of
SimEnc is consistent with AWS Lambda [12]. Considering
that external attackers or unauthorized insiders can access the
storage pool, SimEnc encrypts images to prevent attackers
from accessing the plaintext data. To secure data during trans-
mission, SimEnc employs TLS to establish a secure channel
between the client and the server, preventing third-party ac-
cess to plaintext data. SimEnc typically relies on a trusted
cloud, but it can also adapt for scenarios lacking this trust.
In such cases, encryption processes are handled on the client
side, albeit with increased overhead from local model infer-
ence. All operations except for key generation occur locally
because it uses semantic hash values from different users to
produce keys. To secure key generation in an untrusted cloud,
SimEnc could leverage the cloud’s Trusted Execution Envi-
ronment (TEE) [4, 16, 63, 67, 79]. It first establishes a secure
communication channel between the client and the cloud-side
TEE, and the client submits its semantic hash. The TEE then
securely computes keys by calculating hash distances from
various clients (cf. §4.3.2) and sends them back. Clients en-
crypt their data locally and upload the encrypted data to the
cloud, where it is deduplicated in the cloud.

Long-term tracking. Given the system’s evolving frequent
requests and the similarity of layers, it’s crucial to monitor the

system over time and perform timely rewarming or updates
as needed. SimEnc uses a hash network for semantic hashes,
the effectiveness hinges on the dataset quality [61].

5 Implementation

We have implemented a prototype of SimEnc in Go by adding
∼3,000 lines of code to DupHunter [83]. Due to some li-
braries in DupHunter original project [82] becoming obsolete
or no longer in use, we reconstruct the invalid library refer-
ences and updated certain libraries to the latest API calls. Our
code is open-sourced for public access4. We develop partial
decoding and encoding tools for Docker layers by ∼1500
lines of code in C/C++. During the process of users upload-
ing image files, the system performs partial decoding on the
layered data according to the specified mode, segments the
generated data, and then stores metadata such as the number
and size of file blocks in the main server’s memory, to fa-
cilitate the restoration and compression of partial data back
to its original form. To further enhance the performance of
Redis caching, we changed the original Redis singleton con-
nection mode in DupHunter’s code to a cluster connection
mode and reconstructed all API calls for Redis memory oper-
ations. In addition, we utilize the FastCDC [76] as the CDC
implementation and exploit AES-CTR [64] for encryption.

In training the semantic hash, we employ a CNN architec-
ture [44] as the semantic hashing model [65]. Specifically,
for 512KiB input chunks, our model comprises eight convo-
lutional (conv) layers, with each conv layer being followed
by ReLU, BatchNorm, and MaxPool layers. Subsequent to
the CNN processing, we deploy two linear layers to generate
the hash codes. Note that the neural network architecture is
specific to the input chunk size. The greater the size of the
input chunk, the deeper the network structure required to ex-
tract additional semantic information, necessitating a larger
number of Linear parameters.

6 Evaluation

6.1 Methodology
Evaluation platform. We set up SimEnc on three PC servers,
each equipped with a 20-core Intel i9-10900K CPU (@3.70
GHz), 128GB DDR4 DRAM, and a 4TB S690MQ SSD. All
servers run Ubuntu 20.04 as their operating system and are
interconnected via a 100MB/s network. We use one GeForce
RTX 3090 Ti for training and inference processes of the se-
mantic hashing network. For each experiment, we conduct
ten runs to calculate the average value.

Baselines. We compare SimEnc against three baselines.
• DupHunter [83], the state-of-the-art Docker registry

for plaintext deduplicaiton. We reproduce DupHunter’s

4 https://github.com/suntong30/SimEnc

https://github.com/suntong30/SimEnc


code [82] on GitHub with the deduplication, restoring,
caching, and preconstructing layers mechanisms mentioned
in [83]. We configure the cache size as 5% of total size of
unique layers in the workload, and utilize the LRU [59]
cache algorithm for caching.

• AWS Lambda registry [12], the state-of-the-art serverless
platform for encrypted Docker image deduplication using
MLE. We adhere to the settings outlined in [12], which
include setting a fixed block size of 512KiB, using the
SHA256 hash of the block as the key, and encrypting with
AES.

• Improved AWS Lambda. We integrate LSH-based MLE in
AWS Lambda with Finesse [81], to generate identical keys
for similar chunks. We use twelve (3 × 4) Rabin fingerprint
functions with a window size of 48 bytes in total. We set the
max, average, and min chunk size of CDC to 1KiB, 0.5KiB,
and 0.2KiB [1]. In addition, a chunk may have multiple
similar chunks, and we select the first matched chunk as its
base, which is also known as "FirstFit" [43].

Datasets and workloads. Table 2 summarizes the charac-
teristics of our datasets and workloads in terms of the size
and unique layers. Our dataset comprises sequential version
images downloaded from DockerHub, selected for two rea-
sons: (i) they are popular images in real-world applications,
widely used for reuse purposes (e.g., Ubuntu [24] of operat-
ing systems and Couchbase [20] of databases), and have been
studied in previous research [79]; (ii) as they are sequential
versions, some files within the compressed layers have been
modified, making it unlikely to find duplicates at the layer
level, thus facilitating our research. Our workload involves
IBM’s trace dataset [5, 35]. To evaluate DupHunter’s perfor-
mance with production registry workloads, we utilize IBM
traces from four production registry clusters (Dal, Fra, Lon,
and Syd) [5, 35, 83], covering approximately 80 days. We
employ the Docker registry trace replayer [35] to replay valid
requests from each workload. For each workload, we use the
first 5,000 requests to warm up the system. We modify the
replayer to align requested layers in the IBM trace with actual
layers downloaded from Docker Hub [21], based on layer size.
As a result, each layer request involved pulling or pushing
an actual layer. For manifest requests, we generated random,
well-formed manifest files, following DupHunter [83].

Warm-up. The warm-up process can be divided into three
stages: (1) model setup and training, (2) deduplication cluster
warm-up (including initial layer ingestion and bootstrapping),
and (3) system rewarming. To prepopulate the deduplica-
tion cluster, we collect traces and corresponding layers from
the first several user requests and filling the Bloom filter to
perform initial layer ingestion. It calculates the hash of the
Huffman tree for each layer at the management server and
utilizes a Bloom filter to decide whether to apply layer-level
or chunk-level deduplication. Once all requests are processed,
layers designated for layer-level deduplication undergo dedu-

Table 2: Summary of the evaluated datasets and workloads.
Dataset/Workload #Layer #Unique Layer Comp. size Partially decoded size Decomp. size

Ubuntu [24] 46 46 1.18 GiB 1.67 GiB 3.24 GiB
Couchbase [20] 516 263 17.74 GiB 35.85 GiB 41.29 GiB
IBM (Dal) [35] 2000 758 11.23 GiB 15.36 GiB 28.97 GiB
IBM (Fra) [35] 2000 700 10.77 GiB 14.57 GiB 27.88 GiB
IBM (Lon) [35] 2000 710 9.49 GiB 13.11GiB 25.11 GiB
IBM (Syd) [35] 2000 503 19.01 GiB 25.73 GiB 48.48 GiB

IBM (Random) [35] 13619 7521 263.13 GiB 318.8GiB 643.95 GiB

Table 3: Deduplication ratio vs. pull layer latency.

Mode
Deduplication ratio

Latency
(compared to B-mode 1)

Workload
Dal Fra Lon Syd Dal Fra Lon Syd

B-mode 1 1.28 2.68 1.65 1.87 1.0x 1.0x 1.0x 1.0x
B-mode 2 1.24 2.60 1.58 1.72 0.94x 0.75x 0.70x 0.53x
B-mode 3 1.21 2.40 1.51 1.65 0.62x 0.61x 0.52x 0.42x
H-mode 1.60 2.71 1.94 2.69 1.44x 1.05x 1.57x 1.09x
F-mode 1.54 2.70 1.79 2.46 1.28x 0.87x 1.42x 1.07x

plication by MLE in compressed space, while others are par-
tially decoded and chunked. The trained model then generates
semantic hash values for each chunk, which are clustered
using the similarity-preserving key generation mechanism
(cf. 4.3.2) to produce keys. These chunks are divided into
sub-chunks via the CDC algorithm and encrypted. The keys
and metadata for the chunks are securely stored in the man-
agement cluster. The primary rewarming involves updating
the semantic hash network and the deduplication cluster. A
comprehensive but resource-intensive method is to reset all
layers to their initial state, retrain the semantic hash network,
and refresh the deduplication cluster. Alternatively, SimEnc
employs an efficient incremental rewarming approach: (i) It
uses newly uploaded layers to continuously train the model,
allowing it to adapt to the current semantic distribution; (ii)
It monitors the distribution of layer similarity and popularity,
and selectively updates the deduplication cluster manually.

6.2 Deduplication Ratio
Deduplication ratio in partially decoded space. To demon-
strate the deduplication ratio of SimEnc, we conduct all
layers of deduplication in the partially decoded similarity
space. Each layer is divided into 512KiB chunks after par-
tial decoding. The results are shown in Figure 10. We ob-
serve that SimEnc achieves the highest deduplication ratio
in tested datasets and workloads. In two datasets and five
workloads, SimEnc achieves an average deduplication ratio
that is 38.6% higher than the LSH-based MLE (enhanced for
AWS Lambda [12]) and 109.2% higher on average compared
to the MLE implemented in AWS Lambda [12]. Specifically,
SimEnc outperforms LSH-based MLE by up to 54.2% and
MLE by up to 261.7% in the Ubuntu dataset. We perform
fine-grained statistics on deduplicated blocks on the Ubuntu
dataset. We observe that compared with brute force search,
SimEnc can identify 93% of data block similarities through
semantic-aware MLE. The MLE method suffers from high
perturbation and can only identify identical blocks (occupying



Table 4: Comparison of deduplication ratio and average pull
layer latency on IBM traces [5, 35].

High deduplication mode (H-mode)
Docker Registry Deduplication ratio Latency (s)
DupHunter [83] 1.866 0.285
SimEnc (Ours) 2.710 0.206

Flexible mode (F-mode)
Docker Registry Deduplication ratio Latency (s)
DupHunter [83] 1.45 0.124

SimEnc with DupHunter’selective method 1.49 0.117
SimEnc (Ours) 2.70 0.133
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Figure 10: Deduplication ratio in partially decoded space.

30.1% of total blocks). Although LSH-based MLE can gener-
ate the same key for similar blocks through super features, it
still has difficulty coping with the incremental modifications
that occur at the feature extraction point, and thus can only
identify 68.0% of similar blocks.

Deduplication ratio vs. latency. We evaluate SimEnc’s
deduplication ratio and pull latency trade-off with different
deduplication modes (cf. §4). We replay the four production
workloads [5, 35] and record the average pull layer latency.
The results are illustrated in Table 3.

In B-mode n, the deduplication ratio diminishes as n in-
creases. Conversely, relative to B-mode 1, the average latency
escalates to 1.0x, 0.73x, and 0.54x in B-mode 1, 2, 3, respec-
tively. This latency reduction is due to the decreased number
of layers subject to deduplication following partial decoding,
which is proportional to the increment in n. While this reveals
greater similarities, thus enhancing the deduplication ratio, it
concurrently incurs added time overhead from the increased
partially encoding operations during user requests.

We now discuss H-mode and F-mode. H-mode achieves
the highest deduplication ratio among all four production
workloads, a result of deduplicating all compressed layers in
the partially decoded similarity space. However, this leads to
the highest latency costs. In F-mode, SimEnc employs the
fast similarity space selection mechanism (cf. §4.2). Here,
layers are selectively deduplicated in the partially decoded
space at chunk granularity. Consequently, F-mode positions
itself between B-mode 1 and H-mode, striking a balance with
a deduplication ratio nearing that of H-mode, yet maintaining
a latency comparable to B-mode 1.

Comparison with DupHunter. We compare SimEnc with
the DupHunter [83] in terms of deduplication ratio and pull la-
tency under the IBM (Fra) workload. Note that the Duphutner
deduplicates plaintexts of Docker images while SimEnc dedu-
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Figure 11: 99th percentile pull layer latency.

plicates encrypted images. In the H-mode, we configure all
layers to be partially decoded and completely decompressed
before deduplication for SimEnc and DupHunter, respectively.
In the F-mode, DupHunter utilizes selective decompression
according to the layer popularity [83], while SimEnc deploys
our fast similarity space selection mechanism.

The comparative results are shown in Table 4. (i) In H-
mode, SimEnc achieves a 45.2% higher deduplication ra-
tio and a 27.7% lower latency than DupHunter. Despite Du-
pHunter’s approach of deduplicating layers in plaintext af-
ter complete decompression at file granularity, SimEnc oper-
ates at block granularity. SimEnc encrypts layers using our
semantic-aware MLE after partial decoding, leading to a su-
perior deduplication ratio compared to DupHunter’s plaintext
method, even though SimEnc deduplicates ciphertext. Addi-
tionally, the partial encoding time required by SimEnc during
restoration is shorter than DupHunter’s recompression with
gzip. Furthermore, while SimEnc necessitates decrypting the
encrypted blocks during restoration, this process averages
only 0.05s, counteracted by the time saved between partial
encoding and gzip compression. (ii) In F-mode, DupHunter
implements selective decompression for layer deduplication
based on layer popularity, achieving a 56.5% reduction in pull
latency compared to H-mode, but at the expense of a 22.3%
decrease in deduplication ratio. Similarly, SimEnc, adopting
DupHunter’s flexible strategy reduces latency by 43.2% while
also reducing the deduplication rate by 45.2% compared to
H-mode. SimEnc leverages our fast similarity space selection
mechanism (cf. §4.2), enhancing the deduplication ratio by
86.2% over DupHunter while maintaining comparable latency.
This results in a modest 7.3% increase in latency overhead
relative to DupHunter.

6.3 Latency
Overall pull latency. Figure 11 displays the 99th per-
centile latency of SimEnc. We observe that compared to Du-
pHunter [83], SimEnc achieves an average latency reduction
of 72.39% across four workloads. Notably, in the Fra work-
load, SimEnc’s 99th percentile pull latency is reduced by up
to 88.53%. This improvement is due to our deduplication in
the partially decoded space, while DupHunter performs dedu-
plication in the completely decompressed space, requiring
both Huffman and LZ77 encoding processes for restoration.
In contrast, SimEnc performs deduplication in partially de-
coded space, which only necessitates Huffman encoding in
restoration. Interestingly, our findings show that even with
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the preconstruct cache mechanism active, SimEnc maintains
superior latency performance compared to DupHunter. This
is attributed to the fact that while the preconstruct cache can
anticipate and pre-restore the subsequent layer, it is still con-
strained by a bottleneck effect. Consequently, in the most
favorable scenario, the longest time taken for a pull request is
dictated by the restoration time of the layer with the highest
byte count.

Pull latency breakdown. We break down the pull la-
tency of DupHunter [83] and SimEnc under the IBM (ran-
dom) workload. We make two main observations from
Figure 12. (i) The average latency of SimEnc is 58.4%
lower than DupHunter. (ii) Re-compression (re-encoding in
SimEnc) time accounts for 98.6% and 81.4% of the average
time of DupHunter and SimEnc, respectively. This suggests
that SimEnc is better than existing methods in terms of la-
tency because existing methods require recompression, while
SimEnc only requires Huffman encoding.

Comparison of latency with AWS Lambda. Despite
AWS Lambda [12] is a serverless platform where client im-
ages don’t require recompression after restoration (as they
can be directly mounted and executed), a fair comparison
with SimEnc is possible in terms of the end-to-end latency
from requesting to starting the Docker image. The end-to-end
latency for AWS Lambda primarily comprises decryption and
downloading [12], whereas for SimEnc, it includes decryp-
tion, partial encoding, downloading, and decompression. We
evaluate the impact of different network bandwidths and layer
sizes on end-to-end latency. Figure 14 shows the results.

In low-bandwidth (<50MB/s) scenarios, SimEnc achieves
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Figure 15: Deduplication throughput.

lower end-to-end latency compared to AWS Lambda because
it transmits original compressed data, whereas AWS Lambda
transmits flattened data. Additionally, with large file sizes,
SimEnc maintains lower latency. Despite needing re-encoding
and decompression, this process is faster than AWS Lambda’s
transmission of 2-3 times more data.

6.4 Throughput

Figure 15 shows the average deduplication throughput of
SimEnc and DupHunter under different workloads, normal-
ized to DupHunter. SimEnc provides up to 85.8% (75.6%
on average across all workloads) of the average throughput
of DupHunter. To better understand the performance over-
heads of SimEnc, we measure the average throughput of each
step per input data block during the encrypted deduplication
process. We find that the performance overhead is mainly
due to the semantic-aware MLE in encrypted deduplication.
Our measurements indicate that SimEnc achieves an average
throughput of 135.2MB/s when partially decoding a layer.
Utilizing the LSH-based MLE method for deduplication, this
throughput averages 43.7MB/s. However, when employing
a semantic hashing model to generate data chunk sketches,
the throughput decreases to 16.8MB/s, turning it into a bottle-
neck. We note that SimEnc currently relies on a single GPU
for inference. Utilizing multiple GPUs for parallel inference
could improve throughput, potentially enabling SimEnc to
outperform DupHunter.

6.5 Semantic-aware MLE Effectiveness

Clustering effectiveness. To evaluate the effectiveness of
the similarity-preserving clustering algorithm (cf. §4.3), we
compare it with different clustering algorithms and hyperpa-
rameters. We manually set different ε hyperparameters for
DBSCAN in our semantic-aware MLE, and also replace the
clustering algorithm with the K-Means algorithm (K=100).

The results are shown in Figure 13, revealing the following:
(i) utilizing the K-Means algorithm for clustering semantic
hashes prior to encrypted deduplication results in the lowest
deduplication ratio, even producing negative storage saving
benefits. This outcome is primarily due to K-Means’ suitabil-
ity for spherical data and its effectiveness in clustering similar
data in Euclidean space. In contrast, our semantic hashing
deals with arbitrarily shaped high-dimensional data, with sim-
ilarity being defined in Hamming space, making K-Means
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Figure 16: The visualization of clustering in semantic hash
code space w/wo hashing contrastive learning.

less effective in this context. (ii) Using our novel similarity-
preserving clustering algorithm, SimEnc adaptively set the ε

at 0.3 in this case. Our deduplication ratio increased by 33.3%
compared to LSH-based MLE and by 66.7% compared to
MLE (deployed in AWS Lambda). This is due to SimEnc’s
ability to assign the same key to similar data and perform
fine-grained encrypted deduplication on sub-blocks, thereby
achieving more storage savings. (iii) As the ε hyperparameter
of DBSCAN increases, the deduplication ratio also becomes
higher. This is because ε determines the class distance, and
the larger the ε, the more likely it is to cluster data from far-
ther distances together. However, this can pose significant
security risks. For example, when ε is set to 0.7, although
its deduplication ratio is close to optimal, it generates only 3
unique keys for 73,406 512KiB blocks.

We now use the benefit score (cf. §4.4) to measure the
security and storage savings. In the above case, LSH-based
MLE and SimEnc achieve the deduplication ratio of 1.43 and
2.08, respectively, using 25,032 and 4,761 unique keys. When
α≤ 0.5 (indicating a preference for deduplication over secu-
rity), SimEnc surpasses LSH-based MLE in performance. For
α greater than 0.6, where security is paramount, LSH-based
MLE is more appropriate. It’s worth noting that this is based
on the SimEnc prototype. For enhanced privacy, the similarity-
preserving key generation in SimEnc can be modified to favor
the generation of unique keys for each chunk.

Chunk semantic extraction effectiveness. To evaluate the
effectiveness of our chunk semantic extraction (cf. §4.3.1),
we trained two hashing networks with identical architecture,
one utilizing contrastive learning and the other without it.
Both networks underwent training on the same dataset, em-
ploying identical learning rates and training epochs. Upon
completion of the training phase, these networks were uti-
lized to perform inference on 110,120 512KiB data chunks,
to derive their respective semantic hash values. Subsequently,
we apply the same DBSCAN parameters for clustering and
utilize PCA [54] to condense the dimensionality of the high-
dimensional semantic hashes to 2 dimensions for a more
comprehensible analysis. Figure 16 presents the visualiza-
tion of semantic hash codes. Figure16(a) displays a bias with
clustering on the left, due to the absence of contrastive learn-
ing in the model, making slightly similar data appear very
similar in hash space. Conversely, Figure16(b), employing

contrastive learning, shows an even distribution of hashes,
highlighting the effectiveness of SimEnc’s chunk semantic
extraction method.

7 Conclusion

SimEnc realizes a high-performance similarity-preserving
encryption approach for deduplication of encrypted Docker
images. It is the first work deduplicating encrypted layers in
the partially decoded space, where can achieve better dedu-
plication ratio, latency, and throughput. It first employs the
semantic hash technique in MLE to overcome the limitations
of existing MLE approaches. We show that SimEnc outper-
forms existing approach in performance and storage savings.
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